Vol. 4, No. 3 043601 2015 8

R A AN R e o 58

Flux quench in the §' = 1/2 XXZ chain
(S =1/2 XXZBEBRIZ BT DRI TV F)

FERR PR BB AR SR B 2 L
T 4
(FREZ A MIER)

March 10, 2015



Vol. 4, No. 3 043601 2015 8

Abstract

In recent years, nonequilibrium quantum systems have become a major subject of study
in condensed matter. Quantum quenches, abrupt changes of Hamiltonian of a system,
offer simple protocols to tackle problems in nonequilibrium situations.

In this thesis, we study a fluz quench problem in the spin-1/2 XXZ chain. The flux
quench is a quantum quench where the flux ¢ piercing the XXZ chain is turned off at
t = 0 suddenly. If we formulate the XXZ chain as a spinless fermion model, the flux ¢
corresponds to a vector potential on each bond and this flux quench can be viewed as
imposing a pulse (delta function) of electric field. Therefore the flux quench generates
some particle (or spin) current at time ¢ = 0. We focus on the time-evolution of the spin
current after the quench, and calculate it numerically by the infinite time-evolving block
decimation (iTEBD) method.

We find that the long-time limit (¢ — oo) and the dynamics of the spin current
depend strongly on the anisotropy parameter A of the XXZ chain and the amount of flux
initially inserted. The long-time limit of the current matches with predictions of linear
response theory as the initial flux decreases. However, the deviation from linear response
theory is largely affected by the sign of the anisotropy of the XXZ chain. Regarding
the dynamics, the current decays in time after the quench, and its relaxation time is
dependent on the anisotropy and the initial flux. Furthermore, for large initial flux and
anti-ferromagnetic anisotropy, the current oscillates in long time scale. We numerically
find that the frequency of the oscillation is proportional to |A|. Remarkably, the dynamics
of momentum distribution of spinless fermions reveals that this oscillation of current is
governed by excitations deep inside the Fermi sea. This mechanism of oscillations cannot
be captured by the effective Luttinger model corresponding to the microscopic XXZ7 chain,
which is in contrast with the previous studies on different types of quench in the same
model as ours.
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Chapter 1

Introduction

It is of great importance to study nonequilibrium physics, from the viewpoint of pure-
theoretical interest as well as practical realizations of quantum devices such as quantum
computers. In this chapter, we review background of our study. Nonequilibrium physics
is overviewed and quantum quench problems are introduced in the first section. In the
second section, we sketch the physics in one dimension. Emphasis is put on a drastic
effect of interactions in one-dimensional quantum systems and a wide variety of methods
to study them. An aim of our study and outline of this thesis are presented in the last
part of this chapter.

1.1 Nonequilibrium physics

Equilibrium states are defined as states that have become stationary after long time-
evolution in closed systems. They are designated by only a few parameters, such as
temperature, pressure and volume. In the language of quantum statistical mechanics,
equilibrium states are mixed states (Gibbs states) written as

e=AH

~B _

Paivns = Ty o) (1.1)
where H is Hamiltonian of a system and [ is inverse temperature. In order to reveal
properties of the equilibrium states, many theoretical methods are proposed: mean-field
approximation, renormalization group, Landau-Ginzburg theory, and so on. These meth-
ods can capture essential points of experimental data on complicated real materials. So
far, we have much established understanding of the equilibrium states.

On the other hand, less are known for nonequilibrium states. It is partly because
most theoretical methods for equilibrium states cannot be applied to nonequilibrium
situations directly and we do not have enough tools to tackle them especially beyond
linear response regime. Recently, substantial experimental developments in nonequilib-
rium quantum systems have allowed one to compare theories with experiments at high
accuracy and controllability. For example, optical lattices in cold atom systems [1] can
simulate theoretical models, such as Hubbard model, with broad tunability of parameters
and good time-resolutions of the dynamics. As a consequence, nonequilibrium quantum
systems have become a major subject of study in condensed matter physics [2].

4
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The field of nonequilibrium physics is really vast. There are various ways to drive
systems into nonequilibrium: coupling them to thermal baths, adding interactions with
noisy environments, applying external fields, etc. Among these protocols, in this study
we choose one called quantum quench.

1.1.1 Quantum quench

Quantum quench, a hot topic in recent studies, is a sudden change of parameter(s) in
a quantum system. It is one of the simplest protocols to make systems nonequilibrium
and study the nature of such situations. In typical setup, initial state is prepared as the
ground state of pre-quench Hamiltonian, and then a parameter of the system is changed
in time. The change of parameter induces non-trivial dynamics of the system, and one
studies the dynamics itself and/or its long-time limit.

For example, consider quantum quench of magnetic field in a quantum spin system.
Initial state is taken to be the ground state of Hamiltonian H (h) in the presence of
magnetic field h. We assume that the initial state has magnetic order m. Then the
magnetic field is quenched to zero at time ¢ = 0 abruptly. Because the ground state of
pre-quench Hamiltonian H (h) is not an eigenstate of post-quench Hamiltonian H (h =0),
non-trivial time-evolution® is evoked:

~

H(h) [(h)) = Eo(h) [¢(h)), 6”?”‘” [ (h)) = e W y(h)) (1.2)
H(0) [h(h)) o [e(h)) e O jyo(R)) # e~ Fo 0 [g(h)) . (1.3)

When the ground state and any thermal state of post-quench Hamiltonian H (h=10) do
not exhibit magnetic order, the order parameter m(t) of the state |)(t)) = e iH (0t [(h))
is expected to decay to zero if we assume thermalization. In studies of quantum quench,
this kind of equilibration and resulting thermalization are investigated as well as the
dynamics after the quench.

By quantum quench, we can study various kinds of phenomena. One example is
universal dynamical scaling across a quantum critical point [3]. Universal scaling laws are
found to hold when systems are quenched across quantum critical points, as in the Kibble-
Zurek mechanism for classical systems. Some quantities (density of defects, adiabatic
fidelity, etc.) show scaling laws whose critical exponents are universal and independent
of microscopic details of a system. Another example of phenomena studied by quantum
quench is equilibration and thermalization in closed quantum systems. In addition, the
dynamics towards (thermal) equilibrium is investigated by employing quantum quench.
Below we review these two in detail.

Equilibration and thermalization in closed quantum systems

Equilibration in closed quantum systems is a phenomenon that quantum states become
stationary in the long-time limit, ¢ — oco. If such equilibrated states in the long-time limit
look thermal, we call that phenomenon as thermalization. Specifically, thermalization is

I Tn this thesis, we set A = 1.
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a phenomenon that equilibrated states have the same expectation values for any physical
observable as those of certain Gibbs states pgibbs :

Pl T WO A0(0) = Tr (phped)  forall A (14)

We note that the detail of initial state [¢/(0)) is lost in the right hand side and the
equilibrated state is specified by only one parameter, inverse temperature 5. The initial
state forgets the information about itself during time-evolution and becomes featureless.

Thermalization is rigorously confirmed to happen in some special cases and expected
to occur in generic systems [2,4]. However, for the so-called integrable systems, it is widely
believed that there is no thermalization. Integrable systems are quantum systems that
are exactly solved by Bethe ansatz, and there exist infinitely many conserved quantities in
the system. Naively, the reason for the absence of thermalization in integrable systems is
that the infinitely many conserved quantities prevent states from forgetting information
about themselves. Nevertheless, for integrable systems we can construct another statis-
tical ensemble to describe equilibrated states after quantum quench: Generalized Gibbs
ensemble (GGE) [5]. GGE is an ensemble that contains additional conserved quantities
other than Hamiltonian,

GGE ZGGE

i=1

where QZ are conserved quantities in a system, \; are Lagrange multipliers and Zggg is
a normalization constant. The point of GGE is that while the total number of states
(the dimension of Hilbert space) is exponentially large in system size L, the number of
parameters to designate GGE, 5 and {\}, is linearly large in L. In this sense, information
of initial states is lost and thermalization-like behavior appears even in integrable systems.

For some integrable models essentially equivalent to free particles (e.g. transverse
Ising model), it was shown [5] that GGE can represent equilibrated states after quantum
quench. GGE was expected to be valid also in general integrable systems [2]. However,
quite recently [6] it was proved that GGE having only local conserved quantities cannot
represent states after quench in a certain model (the S = 1/2 XXZ chain, the same model
as our study). We will review this study (Ref. [6]) in section 2.3 as the previous studies
related to our problem. A general proof (or denial) for GGE is still outstanding, and
many problems remain to be solved in the field.

Dynamics after quantum quench

Equilibration and thermalization phenomena say about only the long-time limit of states.
Transient dynamics towards stationary states after quantum quench is also investigated
by many authors [7,8], although the dynamical behaviors after quantum quench are quite
diverse and it is not easy to conclude universal features of them. In section 2.1, we will
review examples of studies that focused on the dynamics after quantum quench in the
S = 1/2 XXZ chain (the model we consider in this thesis).

6
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1.2 One-dimensional quantum systems

In this thesis, we study a nonequilibrium problem in one dimension. Here we review the
physics of one-dimensional quantum systems.

One-dimensional quantum systems have been studied for more than 50 years [9]. They
have attracted theorists because of their remarkable features: a strong effect of interactions
on systems and wide availability of theoretical methods and exact results, compared with
higher-dimensional systems. One can regard them as a prototype of strongly-correlated
systems; effects of interactions are quite strong but we can obtain exact (or very detailed)
results. Furthermore, they are not only a subject of pure-theoretical studies but also
realistic experimental systems: organic conductors, carbon nanotubes, quantum wires,
optical lattices in cold atomic systems, and so on.

Drastic effect of interactions in one dimension and Tomonaga-Luttinger liquid

Interactions play a crucial role in one dimension. The breakdown of Landau’s Fermi
liquid theory manifests the importance of interactions in one dimension. Fermi liquid is
a universality class into which a wide variety of metallic systems of interacting fermions
in higher dimensions (> 1) flows under the renormalization group. Fermi liquid theory
(as a textbook, we name Ref. [10]) is well established in dimensions higher than one. Its
assumption is the existence of quasiparticle excitations that are adiabatically connected
to excitations in a free system as interactions are turned off. In one dimension, however,
interactions change properties of a system drastically and elementary excitations become
collective and bosonic; they are not connected adiabatically to excitations in a free system.
Consequently, Fermi liquid theory breakdowns in one dimension.

Metallic systems of interacting fermions in one dimension flow into another univer-
sality class under the renormalization group: Tomonaga-Luttinger Liquid (TLL). TLL is
gapless and critical, and it has no symmetry-breaking orders. It is designated by only two
universal parameters, the renormalized Fermi velocity vy and the Luttinger parameter K.
Low-energy physics of a system belonging to TLL universality class is fully determined
by these two parameters. For example, the exponent of correlation function of fermions
at long distance (low-energy) is written by K: G(r > 1) ~ 1/r'/2K+K/2 Fyurthermore,
one of the most important aspects of TLL is that not only fermionic but also bosonic
and spin systems in one dimension mostly exhibit TLL behaviors. TLL is ubiquitous in
one-dimensional quantum physics.

Theoretical methods to study one-dimensional quantum systems

In spite of such strong (non-perturbative) effects of interactions, many analytical and
numerical methods are available to study one-dimensional quantum systems compared to
higher-dimensional systems. We briefly review some of the methods; Bethe ansatz [11]
gives exact solutions for one-dimensional Heisenberg model and Hubbard model. The
solvability of these models becomes a branch of mathematical physics under the name
of integrable systems. Bosonization [9] is one of the most powerful theoretical methods
to analyze one-dimensional quantum systems. Peculiarity of one dimension that parti-
cles cannot overtake each other allows us to map fermionic systems into bosonic systems

7
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and vice versa, which results in making the method applicable to wide classes of mod-
els. Conformal field theory [12] predicts behaviors of a system at and nearby a critical
point. For one-dimensional systems (1+1 dimension in space-time) conformal invariance
emerging from criticality strongly dictates various physical quantities and we can obtain
exact formulae for such quantities. As for numerical methods, we can employ exact diag-
onalization (ED) and quantum Monte Carlo for one-dimensional systems [13] in the same
manner for higher-dimensional systems. Moreover, as peculiar methods in one dimension,
density matrix renormalization group (DMRG) [14] and time-evolving block decimation
(TEBD) [15] enable us to deal with very large systems (several hundreds of sites) that
cannot be handled by ED or quantum Monte Carlo. We employ infinite-TEBD (iTEBD)
method in this study and it is reviewed in chapter 3.

1.3 Purpose of this study

When we combine two concepts introduced in this chapter, we conceive of a stimulating
field: nonequilibrium physics in one-dimensional quantum systems. Although nonequi-
librium phenomena in strongly-correlated systems are formidably difficult to tackle, the
wide availability of analytical and numerical methods in one dimension allows us to study
them at depth. The study of nonequilibrium physics in one dimension can be regarded
as a prototype to understand nonequilibrium phenomena in strongly-correlated systems.

As one of the simplest problems in nonequilibrium and strongly-correlated systems, in
this thesis we study a quantum quench problem named fluz quench in the S = 1/2 XXZ
chain by exploiting the iTEBD method (numerical method peculiar in one dimension).
The flux quench is a quantum quench of flux piercing a ring of the XXZ7 chain and it
induces spin current in the system. We study the long-time limit and dynamics of the
induced spin current after the quench.

1.4 Outline of the thesis

This theses is organized as follows. In chapter 2, the S = 1/2 XXZ chain model is reviewed
and the flux quench problem is defined. Besides, we introduce the previous studies related
to our problem. In chapter 3, numerical methods employed in this study are reviewed. It
is almost independent of other contents in this thesis, so those who are not interested in
details of numerical calculations can skip it. It also can be read as an independent review
of the TEBD method. In chapter 4, the results of numerical calculations are shown.
Discussions on the numerical data are also presented. In chapter 5, we state a conclusion
of this study and future works are discussed. Technical details of numerical calculations
are described in appendix A.
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Definition of the problem: Flux
quench in the S = 1/2 XXZ chain

In this chapter, we review properties of the S = 1/2 XXZ chain model and define a
problem of our study, flux quench.

2.1 S =1/2 XXZ chain model

The S = 1/2 XXZ chain model is a generalization of Heisenberg model which describes
quantum magnets in one dimension. Hamiltonian of this model is defined as

N—-1 N—-1
Hys = — 3 (SES%, + SUS%, + ASS7,) = — 3 ( (S48, + S75%) + ASfoH)
i=0 1=0

(2.1)

are spin-1/2 operators acting on site . We impose periodic boundary condition Sy"* =
Sy¥%. A'is called the anisotropy of the chain. A > 0 (A < 0) means ferromagnetic
(anti-ferromagnetic) interactions between neighboring sites. When A is 00, the model
is equivalent to the Ising model.

This Hamiltonian can be mapped to a spinless fermion system by Jordan-Wigner
transformation:

St = H (1 —QC;r-Cj)C;[, S, = H (1-— QC}cj)ci, SZ=cle; —

0<j<i 0<j<i

1 1
Hiermion = — Z ( (C Cit1 T Cz+1cz> + A (C Ci — 2) (CI+1CZ'+1 - 5)) . (24)

Boundary condition for spinless fermions is determined by that for the XXZ chain, al-
though the relationship between them is slightly complicated [16]. Here we ignore it

where

- (2.3)

9
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N L MM,

Anti-Ferro Gapless, critical Ferro

Figure 2.1: Phase diagram of the ground state of the XXZ chain. For all anisotropies A,
Hamiltonian is integrable and the exact ground state energy is known.

because in numerical calculations we treat the thermodynamic limit of the system, where
the boundary condition does not matter. In the spinless fermion formulation, A is the
strength of nearest density-density interactions.

At A =0, Hiermion becomes tight-binding Hamiltonian and can be solved by Fourier
transformation:

N—-1
1 ot
errmion,free = _5 Z <CZ‘LCZ'+1 + CZ‘L+1CZ') = - Z COS(]C)CLC]C, (25)
= k
1 N-—1
~ —ikr
CL = —— cre (2.6)
e

The ground state is thus the Fermi sea of spinless fermions, [Ty, Ezék |vacuum) (kp is the
Fermi momentum). Furthermore, it is known [11] that the XXZ Hamiltonian is exactly
solvable by Bethe ansatz for arbitrary anisotropies A. According to the exact solutions,
Hamiltonian is gapless for —1 < A < 1, gapped for A < —1 (anti-ferromagnetic phase)
and 1 < A (ferromagnetic phase). Phase diagram of the ground state is shown in Fig. 2.1.
In gapless phase, there is no magnetization ) . (S?) and correlation functions (S§S7) and
(S5SZ) show power-law decay. In addition, the model exhibits TLL universality [9]. The
renormalized Fermi velocity vg and the Luttinger parameter K are exactly known,

/1 — A? T

= 2 arccos(A)’ K= 2 arccos(A)’ (2.7)

In gapped anti-ferromagnetic phase, non-zero staggered magnetization y_,(—1)"(S7?) ap-
pears and the magnetization is zero. All correlation functions decay exponentially in
space. The ground state is similar to classical Néel state |1/1] ---). However, the true
ground state energy is lower than that of the Néel state and neighboring correlation
(S;fS:;1) is finite. Only in the limit of A — —oo, the ground state becomes the Néel
state. In gapped ferromagnetic phase, the ground state is simply |11 ---) or ||| --+) for
all A > 1.

An important feature of the XXZ chain is integrability. The S = 1/2 XXZ chain is
integrable for any A and its infinitely many conserved quantities {Q;}; can be calculated
by algebraic Bethe ansatz [11]. It is one of the non-trivial integrable models in the sense
that it is not equivalent to a model of free particles.

Previous studies on quantum quench in XXZ chain

The XXZ chain is one of the simplest models in one-dimensional quantum systems that
include interactions. For this reason, various types of quantum quench in the XXZ chain

10



Vol. 4, No. 3 043601 2015 8
Chapter 2. Definition of the problem: Flux quench in the S = 1/2 XXZ chain

XXZ chain

Flux ¢ = 6N

Figure 2.2: Hamiltonian Hy represents a ring of the XXZ chain pierced by magnetic flux
¢ =0N.

have been studied. We review some of them here.

Barmettler et al. [17] studied quantum quench in the XXZ chain where initial state
is prepared as the Néel state [f/1] ---). They numerically calculated the dynamics of
staggered magnetization by the iTEBD method. They found oscillatory dynamics in gap-
less phase (|]A| < 1) and nonoscillatory dynamics for large anti-ferromagnetic anisotropy
(A <« —1). Furthermore, they showed that at the critical point (A = —1) the relaxation
time takes a minimum in contrary to the notion of critical slowing down, from which we
expect a maximum. Fagotti et al. [18] investigated quantum quench in the XXZ chain by
taking various initial states (Néel states, dimer states, etc.). They calculated the dynamic
of some correlators such as (S§ST) or (S§S5) by time-dependent DMRG and iTEBD, and
compared the long-time limit of the correlators with analytical predictions from GGE.
They found the numerical data agree with the prediction from GGE well. The authors of
Ref. [19] and Ref. [20] considered the so-called interaction quench in the XXZ chain. The
interaction quench is a quantum quench of the anisotropy A which is changed from zero
(free fermion point) to some finite value. They focused on the Z-factor of momentum
distribution of spinless fermions and kinetic energy of the system, and concluded that
those quantities after the quench are well described by the effective TLL. Their results
are in contrast with our present study, as we will see later. Finally, we comment that
analytical methods based on the Bethe ansatz techniques to study quantum quench in
the XXZ chain are proposed by Ref. [21,22].

2.1.1 XXZ chain with flux

The XXZ Hamiltonian with flux is defined as

1 . 1 .
Hy = — Z (56165;_5;1 + 56_2951‘_5111 + ASP iz+1> . (2.8)

)

In the spinless fermion representation,

Hy = — Z (%ewcjciﬂ 4 %ewcjﬂci + A <C;[C@' — %) (cLchl — %)) . (2.9)
0 can be viewed as Aharonov-Bohm phase on hopping of particles, or vector potential.
Hamiltonian Hy corresponds to a situation where a ring of the XXZ7 chain is pierced by
magnetic flux ¢ = N (Fig. 2.2). This Hamiltonian has been studied in the context of
the Drude weight (DC-conductivity) of the XXZ chain [23], spectral flow of the energy
levels [24] and the Berry’s phase induced by adiabatic insertion of the flux [25].

11
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For a finite size system, the presence of magnetic flux can be converted to twisted
boundary condition by Lieb-Schultz-Mattis (LSM) operator [16]

N-1
Uy = exp <—i9 > rS;) . (2.10)

r=0
We can show easily
N1y 1
UgHaUe = Ho twisted = — Z ( SiSia+ 55;5;;1 + ASfoH) , ST = SEeTON(2.11)
i=0
This is zero-flux XXZ Hamiltonian with twisted boundary condition. An exact solution
is known [26] for the twisted boundary condition case and the ground state energy in the
thermodynamic limit is the same as that of the XXZ chain without twist.

If BN = 0 mod 27, there is no effects of twist even after the unitary transformation
by LSM operator. In this case Ug HyUy = Hy holds, and therefore the ground state of Hy
is given by that of Hy:

|0)as = Us |0 = 0)¢s - (2.12)
Note that the ground state of Hy and Hj is different from each other although the energy

spectrum of them are the same.
In the spinless fermion language, LSM operator is written as

N-1
Up = exp (—i@ Z rcicr> : (2.13)

r=0

Here we ignored an unimportant constant factor in Uy. Uy acts on fermion operators as
a boost in momentum space,

USerUy = Gppa, UsetUy = &}, (2.14)

We will use this property later.

In this thesis, we study a spin current of the 5 =1 /2 XXZ chain. The definition of
spin current J is

Z]u ]% - S Sz_Jrl 5;5;1)7 (215)

which is taken to satisfy! the continuity equation

d . ol
dt
We define J as an intensive quantity because we consider the thermodynamic limit N —

oo in numerical calculations. In spinless fermion notation, J is expressed as

A 1
J=— (czciﬂ 101) = Zsm ckck (2.17)

I This definition of the spin current is for Hamiltonian H, (zero—ﬂux case). In the presence of flux,
the continuity equation changes and we have to bhghtly modify the definition of the spin current if we
want to make it hold, j¢ = (2i)~! (eSS, | — e75; 51 ).

12
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o(t
f()

0 i—.

t=0 t

Figure 2.3: Quench protocol of the flux quench. In our study, we take # < 0 so that initial
spin currents become positive.

This is exactly the current of spinless particles. The spin current is not a constant of
motion in the presence of interactions (A # 0):

A

[HO, J] = (S;rsill + 51_531) (Siz—l - iz+2) : (2'18)

%N i

Non-conservation of the spin current is due to the Umklapp scattering by the term

A S8

2.2 Flux quench in the S =1/2 XXZ chain

Let us define flux quench in the S = 1/2 XXZ chain, a main problem of this study. The
flux quench is a quantum quench of phase (or flux)  in the XXZ chain,

1. 1 _. 0 (t<O0

H() = = Y (o010 + 3o 0SS5+ ASES ) 000 = {O Et - O; |

(2.19)
The protocol of quench is drawn in Fig. 2.3. At first (¢ < 0), the system is taken to be
the ground state. Suddenly the flux is turned off at t = 0, and then the system starts
evolving in time. If we regard®? —@ as a vector potential for spinless fermions, changing
the vector potential in time is equivalent to imposing electric field to fermions. In our
quench protocol, the electric field is delta function,

d(—0(t))

B(t) = === = ~03(1). (2.20)

%

Therefore, at t = 0 the (spin) current is induced by the flux quench.

Equivalently, we can regard initial spin current at t = 0 as a persistent current in
the ground state of the XXZ7 chain with flux. This is manifested in the spinless fermion
picture. As we discussed in the last section, when initial flux ¢ = 6N is zero in modulo
27 the ground state of pre-quench Hamiltonian is written as Uy |# = 0) 4. Recalling that
Uy acts on fermion operators as a boost in momentum space, we know that Up |6 = 0)

2 In a standard notation, a vector potential A is defined as H4 ~ Ha—o — Aj (j is current operator).
In our case Hyg = Hy + 6, j; + O(6?), and therefore we define the vector potential as —6.

13
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0.8 | A 0=-1/3 |
07t

0.6 f

< 057
0.4 f
0.3} |
02+ ° - ° N

0 gt -
-1 -08-06-04-02 0 02 04 06 08 1

Momentum q /n

Figure 2.4: Initial momentum distribution n, = (¢é,).

is the shifted Fermi sea by momentum — (initial momentum distribution n, = (¢ié,) is
shown in Fig. 2.4). Since the (spin) current is given by (J) = N1 >, sin(q)ny, the shifted
Fermi sea has non-zero persistent current, which is the origin of initial current of the flux
quench.

In this study, we investigate the dynamics of spin current after the flux quench by
numerical calculations. We focus on two points:

(i) What is the fate of spin current in the long-time limit? As we will see below, from
linear response theory in 6 the long-time limit of the current is given by the Drude
weight of the XXZ chain. How dose nonlinearity appear for large 67

(ii) How is the dynamics after the quench? In gapless phase there is no a priori energy
(or time) scales. What determines the time scale of the dynamics?

The main results of our study are presented in chapter 4. In the rest part of this section,
we discuss possibilities of experimental realizations of the flux quench and the analysis by
linear response theory on the flux quench.

Experimental realizations of the flux quench

Before going to analyze the flux quench by linear response theory, we comment on possible
experimental realizations of the flux quench. The flux quench can be viewed as a shift
of momentum at ¢ = 0 in the spinless fermion picture. Therefore, it is equivalent to a
situation where a moving lattice (its velocity gives an initial shift of momentum) stops
suddenly at ¢ = 0. This quench process was experimentally realized [27] in bosonic
optical lattice. As for bosonic optical lattice, a quantum quench of artificial gauge field
is also proposed [28]. This is a more direct realization of the flux quench (although
it is a bosonic system). We expect that these kinds of quench will be performed for
fermionic optical lattice in the near future. Furthermore, recently a optical lattice system
which is equivalent to the Heisenberg chain (A = 1) was realized and an experiment
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on nonequilibrium transports in the chain was done [29]. Considering these substantial
experimental developments, we are optimistic about realizing our flux quench in optical
lattice systems. We hope it provides us information that cannot be obtained by the
numerical approach employed in this thesis.

2.2.1 Analysis by linear response theory and the Drude weight

When 6 is small, a term e can be expanded as ¥ = 1+ + O(6?). Hamiltonian for the
flux quench problem can be written as

H(t) ~ Hy — 0JNO(1), (2.21)

where O(t) is step function. We can employ linear response (LR) theory in 6 and obtain

J(t) = (J(1)),
J(t) = % / dwF (w)o(w)e ™ + 0(6?), (2.22)

where F'(w) = —@ is Fourier transformation of the imposed electric field E(t) = —64(t)
and o(w) is spin conductivity®

_ N / dt e ([F(8), s, (2.23)
Here (...)gso means the expectation value for the ground state of Hy. The spin conduc-
tivity has anomalous zero-frequency component and it is called the Drude weight:
0(w) = 21D (w) + Treg(w). (2.24)
Thus the long-time limit of the current is given by D (we take 6 < 0 in this study),
J(t =00) = —D0 = DIb|. (2.25)

The Drude weight D is related to change of the ground state energy as inserting small
flux ® into the system, and was calculated exactly by the Bethe ansatz techniques [23],

T sinp
4 p(m —p)’
D is non-zero only for —1 < A < 1. In gapped phase (JA| > 1) and A = 1, D is zero.
Hence LR theory predicts that J(t = co) is non-zero only for —1 < A < 1.

D= p = arccos(—A). (2.26)

2.3 Previous studies

In this section, we review previous studies related to our flux quench, although motivations
and setups of those studies are different from ours. We introduce two kinds of studies
related to our problem; One is about the long-time limit of the current. The other is
about a bosonic version of flux quench in the context of dynamical stability of superfluid.

3 Non-perturbative Hamiltonian for LR theory in this case is Hy, not Hy. Therefore expectation
values in LR formula should be taken for the ground state of Hy. However, in O(6) level we can obtain
the same results if expectation values are taken for the ground state of Hy.
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Figure 2.5: Left panel: The spin current after the flux quench for 6 = —7/2, A = —0.5
(red line). Note that in their notation the time scale and definition of the current is
twice as ours. They used time-dependent Lanczos method for L = 26 system [6]. Right
panel: Estimation of the Drude weight by numerical data J(t) (t*/to is the time at which
estimation was done and ¢ is initial fiux). Blue line shows exact values of the Drude
weight. Note that their definition of A is different from ours by sign. A > 0 in the figure
corresponds to A < 0 in our notation. They used time-dependent DMRG for L = 100
system [28].

2.3.1 Previous studies on the long-time limit of the current

Mierzejewski et al. [6] studied the flux quench in spinless fermion formulation, exactly the
same as our setup, to illustrate the breakdown of GGE. They showed that steady states
after the flux quench cannot be described by GGE. This result is the first example that
clearly denies GGE, and quite seminal for understanding the thermalization phenomena
in integrable systems. Their argument was simple; conserved quantities (); contained
in GGE (page o< exp(—BH — >, \;,Q;)) for the XXZ chain have even parity under the
particle-hole transformation (¢; — (—1)’c!). The spin current J has odd parity under
the same transformation. Therefore the expectation value of the spin current for any
GGE must be zero, Tr(pGGEj ) = 0. Nevertheless, as LR theory predicts and numerically
verified by the authors, the long-time limit J(¢ = co) is obviously non-zero in some cases
(left panel of Fig. 2.5). This is a clear illustration of the breakdown of GGE. The steady
states after the flux quench cannot be expressed by GGE as well as Gibbs (thermal)
states. From the viewpoint of our motivations for the lux quench, we comment that they
did not study J (¢t = oo) systematically varying ¢ and A.

Moreover, a recent publication [28] mainly studying the flux quench in the Bose-
Hubbard model mentioned the long-time limit of the current in the XXZ chain. They
dealt with the flux quench in the XXZ chain as a special limit of the Bose-Hubbard model.
They plotted (right panel of Fig. 2.5) estimation of the Drude weight from numerical data
J(t) at late times (we do not show the details here). If LR theory is exact, all points in
the plot must be on the line. The deviation from the line (LR theory) is large for A > 0
(in our notation, A < 0). They argued that this tendency is due to a finite-size effect of
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Figure 2.6: The spin current after the flux quench in one-dimensional Bose-Hubbard
model [30]. They used iTEBD.

simulations and no further discussion was made. As we will see in section 4.2, we confirm
this tendency but claim that the origin is not a finite-size effect; it is an intrinsic behavior
of the system relating to superfluidity of the system.

2.3.2 Bosonic flux quench

Dynamics of the Bose-Hubbard model has been studied extensively because of its direct
experimental realizations by optical lattices. In this context, the stability of currents in
superfluid regime of the Bose-Hubbard model has been theoretically and experimentally
investigated. The authors of Ref. [30] considered a problem of abrupt momentum boost
(equivalent to quench of flux) for the ground state of one-dimensional Bose-Hubbard
model,

How =7 <bIbi+1 n bj-Hbi) + % > ni(ng - 1). (2.27)

b; is an annihilation operator of boson on site i, n; = bgbi is the number of boson on site
t. Definition of the current operator is the same as in our spinless fermion case,

J

?

ji = (bj.ﬂbi . bIbm) . (2.28)
They took initial state as the boosted ground state of Hgy by momentum ka. The
momentum ka corresponds to 6 in our flux quench problem. The dynamics they obtained
is shown in Fig. 2.6. For small momentum ka and small interaction u = U/.J, the current
decays slowly and sometimes remains non-zero in the long-time limit. The behaviors of
the current are similar to our results, although the model under investigation has different
particle statistics (boson and spinless fermion). Besides, there are no oscillations in the
dynamics of bosonic current, in contrast to our results. We will see other results of bosonic
flux quench in section 4.4 to discuss the relaxation time of the current.
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Numerical Methods

We employ infinite Time-Evolving Block Decimation (iTEBD) method for numerical cal-
culations in this study. In this chapter, we review numerical methods. The iTEBD is
based on matrix product states (MPS), a kind of tensor networks. An overview of tensor
networks is given in the first section. In the second section, background of tensor networks
is reviewed. For a comprehensive and pedagogical review of tensor networks, see Ref. [31].
In the third section, the basics of matrix product states with some detailed proofs are
presented. In the last two sections, Time-Evolving Block Decimation (TEBD) method
and iTEBD method are explained. This chapter is almost independent of other contents
in this thesis, so readers who are not interested in details of numerical methods can skip
here.

3.1 Introduction

Quantum many-body systems are at the heart of studies in condensed matter physics.
Interactions and correlations between a single degree of freedom (particles, spins, etc.)
evoke interesting phenomena which cannot be attributed to the property of such a single
constituent: for example, superconductivity, fractional quantum Hall effect, non-Fermi
liquids and quantum spin liquids. In order to study these phenomena, a simple model
is often proposed, such as Hubbard model for superconductivity or Heisenberg model
for quantum magnets and spin liquids. However, it is far difficult to solve these models
exactly, except for very limited examples. Therefore one often resorts to take numerical
approaches to see the nature of these models. Nevertheless, numerical calculations have
limitations, too. Exponential growth in a dimension of Hilbert space with a system size
restricts available numerical calculations for large systems. For example, the dimension
of Hilbert space of N site lattice model containing M spinless fermions is

dim 2 — (Aj\g) - W+M (3.1)

which is exponentially large in N for a fixed particle density M /N. There are many ana-
lytical and numerical methods to overcome this difficulty: mean-field theory, perturbative
expansions and diagrammatic techniques, renormalization group, dynamical mean-field
theory, quantum Monte Carlo, and so on. All of these methods have advantages and
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disadvantages. For example, quantum Monte Carlo can deal with larger system size than
exact diagonalization can, although the so-called negative sign problem [32] prevents us
from applying the method to frustrated quantum magnets and fermionic systems.

Tensor network methods are one kind of approaches to tackle the problem of large
dimension of Hilbert space. They do not have the negative sign problem and can be
applied to bosonic, fermionic and spin systems in an almost same way'. One important
concept in tensor networks is entanglement. If given quantum state has a small amount of
entanglement, tensor networks can express it by a smaller amount of information compared
with a usual expression using wave function. Area law of entanglement entropy assures
that the ground states of Hamiltonian which we often deal with have smaller amounts of
entanglement than the vast majority of states in Hilbert space. Tensor network methods
have obvious criteria for their applicability, and the error in computation can be estimated
in a clear way (especially for one-dimensional systems).

Famous examples of tensor network methods are density matrix renormalization group
(DMRG) [14], time-evolving block decimation (TEBD) [15], projected entangled pair
states (PEPS) [34] and multi-scale entanglement renormalization ansatz [35]. DMRG,
proposed by S. White in 1992 [14], is one of the most successful numerical methods for
one-dimensional quantum systems. Although DMRG was proposed independently from
the notion of tensor networks, the close relationship between them was realized later (for
a review, see Ref. [36]).

Finally, it should be stressed that tensor networks are not only numerical approaches
but also conceptually new tools to understand quantum phases. Recently, quantum
phases which cannot be classified in terms of Landau’s symmetry breaking were no-
ticed and named topological ordered phases [37,38]. Symmetry protected topological
phases, one variant of topological ordered phases, can be classified by MPS and PEPS
(one-dimensional and two-dimensional version of tensor networks) [39-41].

3.2 Tensor networks

In tensor network methods, a wave function of quantum state is regarded as a large-rank
(many legs) tensor and expressed as contracted sum of many small-rank tensors. One of
the advantages of the tensor network methods is efficiency for expressing quantum states.
In this section, we first introduce the notation and diagrammatic representation of tensor
networks by taking a toy example of tensor network. Next, the area law of entanglement
entropy, which is the most important fact behind tensor networks, is explained. Finally,
the relationship between tensor network states and area-law states is discussed.

3.2.1 Basics of tensor networks

Consider rank-4 tensor A,s,s as a simple toy example of tensor networks. Indices c...d
run from 1 to . x is called the bond dimension? and can be different for each index of the

I Tensor networks for fermionic systems have a problem of sign originating from order of fermion
creation operators. However it is not so serious as the negative-sign problem in quantum Monte Carlo [33].

2 In DMRG literature, the bond dimension is written as m or D. In TEBD literature, x is usually
used.
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Figure 3.1: Diagrammatic representation of Eqn. (3.2).

tensor (for simplicity here we make x the same among indices). Assume that the tensor
A is decomposed into two rank-3 tensors B and C,

X
Aoprs = Z BapCors. (3.2)

e=1

We introduce a diagrammatic representation for calculations in tensor networks, because
it is helpful to understand complicated equations with many indices. Equation (3.2) is
diagrammatically written as Fig. 3.1. Tensors are expressed in diagrams such as circles
and the number of legs shows the rank of the tensor.

Let us consider this decomposition from the viewpoint of an amount of information.
Aupys has x* components, while Buge and C.,s have xx? components. If new bond
dimension Y is equal® to y, the number of components to describe the right hand side
of Eqn. (3.2) is x® + x® = 2x3. Hence when Y is large, the expression in the right hand
side of Eqn. (3.2) is more efficient than the left hand side (raw tensor) in terms of the
amount of information required to store the tensors. This is an illustration of one of the
advantages of tensor networks.

In tensor network methods, we decompose a wave function of a quantum state (it is
a rank-L tensor when system size is L) into many small-rank tensors as in the previous
toy example. That decomposition can greatly reduce the required memory storage and
computational cost in numerical calculations. When attempting to use decompositions
like the previous example for general wave functions in Hilbert space, one may pose these
questions:

(a) how to calculate decompositions for general wave functions and obtain tensor net-
work descriptions of them?

(b) in which conditions the bond dimension of small-rank tensors decomposing a wave
function is small so as to make the tensor network description efficient?

For one-dimensional systems, we will answer both questions in section 3.3. For general
dimensions we discuss only the latter question in the rest part of this section. The answer
of the latter question is entanglement of a quantum state to be represented in tensor
networks.

3 In general, ¥ becomes larger than y. As we will see later, the condition in which we can obtain small
bond dimension Yy is related to entanglement of a tensor to be decomposed.
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3.2.2 Entanglement entropy and area law

As we will see in section 3.3, the bond dimension Y of tensor network methods can be
estimated by entanglement entropy of a state to be expressed. Entanglement entropy is
one of the most famous measures of entanglement in quantum systems. In this subsection,
we show the definition of entanglement entropy and introduce the area law of entanglement
entropy.

Consider a system whose Hilbert space H can be written as a tensor product of Hilbert
spaces of two subsystems A and A, H = H 4 ®@H 5. For lattice systems, it is always possible
to do this decomposition. Entanglement entropy S4 of a pure state [¢)) € H is defined as

SA = —TI"A (pA lnpA) s (33)

where py = Trz (|¢) (¢|) is the reduced density matrix of subsystem A. Entanglement
entropy is von-Neumann entropy of the reduced density matrix p,; this means that the
entanglement entropy S, quantifies information contained in pa. If two subsystems A
and A are entangled, tracing out the subsystem A reduces the information in the sub-
system A and then S, becomes large. This is why entanglement entropy is a measure of
entanglement.

Next we introduce the area law of entanglement entropy. This law assures that tensor
networks can be useful to represent the ground states of Hamiltonians that we often
encounter.

Area law of entanglement entropy (review: [42]) Consider a lattice system. Ground
states of gapped, local Hamiltonians satisfy

Sy ~ const. [0A] + o(|0A)), (3.4)

where Sy is entanglement entropy for subsystem A and |0A| is the area of boundary of
A, 0A. By local we mean that supports of each term in the Hamiltonian are finite, not
scaling as system size L. Furthermore, in one-dimensional systems, the ground states of
gapless and local Hamiltonians also exhibit area law with logarithmic corrections,

Sa ~ const. [0A|In(]A|) + O(|0A]). (3.5)

A physical interpretation of the area law is following. The correlation length £ of the
ground state of gapped and local Hamiltonian is finite [43]. Then each site of the system
cannot be entangled over the distance &, which means that entanglement between two
subsystems A and A is mostly carried by the interface of them (Fig. 3.2). Therefore, Sy
is roughly estimated to be proportional to [0A|. There are rigorous proofs for the area law
in one-dimensional quantum systems under some conditions [44]. For higher-dimensional
systems, rigorous results are limited.

Since we mainly consider one-dimensional systems in this thesis, let us explain the
area law in one dimension more concretely. Consider a L site lattice system (chain) in
one dimension and a gapped and local Hamiltonian on it. The area law implies that
entanglement entropy of the ground state for a half chain (one half of the system) does
not scale as system size L,

Shalf chain ~ O(1), (3.6)
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Figure 3.2: Division of a lattice system into two subsystems A and B = A. If the
correlation length £ is finite, only the sites close to the boundary of A within the distance
¢ (shaded area) can contribute to the entanglement between A and A. Therefore the
entanglement entropy S4 is roughly proportional to the size of boundary |0A|. Figure is
taken from Ref. [45].

even though the size of the half chain scales as L /2. As we will see in section 3.3, this result
greatly affects applicability of tensor networks in one dimension. For gapless Hamiltonian,
the area law indicates Shaifchain ~ In(L). Moreover, we can exploit conformal field theory
to calculate entanglement entropy for this case; the result is [46]

C
Shalfchain ~ 6 In L7 (37)

where ¢ is the central charge of conformal field theory describing the critical (gapless)
ground state.

3.2.3 Ground states are well expressed by tensor networks

In addition to the area law, it is known [47] that if we randomly choose a state in Hilbert
space the state has entanglement entropy which obeys volume law, Sy ~ |A|, with prob-
ability one. In other words, almost all of the states in Hilbert space obey the volume law
of entanglement entropy. Therefore, the ground state of gapped and local Hamiltonian,
which obeys the area law, sits on the very tiny corner of the Hilbert space (Fig. 3.3).
Furthermore, it is proved [48] that the amount of quantum many-body states that can
be generated by arbitrary time-dependent local Hamiltonians in a time that scales poly-
nomially in the system size is exponentially small in Hilbert space. The vast majority of
states in Hilbert space is not physical or reachable in this sense. Considering these two
facts, we can say that the whole Hilbert space is too large to describe the physics around
the ground state.

Tensor network states with constant (not scaling as system size) bond dimensions
exhibit the area law (although we do not show a explanation [31] here). Hence they are
good candidates to describe states around the ground states. Actually, it is proved [45,49]
that tensor network states with constant bond dimensions can express states around the
ground states efficiently. This is an important conceptual point of tensor network methods.
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Hilbert space

«—Area-law states

Figure 3.3: Almost all of the states in Hilbert space obey the volume law. States which
exhibit area law (including the ground state) occupy a tiny amount of Hilbert space.
Tensor network states can describe such area-law states efficiently.

3.3 Matrix product states (MPS)

MPS is a kind of tensor networks for one-dimensional quantum systems. MPS is a basis
of two successful numerical methods for one-dimensional quantum systems, DMRG and
(1)TEBD. In this section, we review MPS. First we define MPS and introduce Schmidt
value decomposition, which is important to understand the structure of MPS. Next we
show that any pure state in a finite lattice system can be expressed in a MPS form. Then
canonical conditions of MPS are stated and calculations of physical quantities in MPS
language are described. We show examples of MPS in the last part of this section.

Let us consider a lattice system of L site whose Hilbert space consists of L times

tensor product of local Hilbert space, H = C‘ C?'® --- @ C? = ((Cd) #" The basis of
local Hilbert space is written as {|i)}%, and d is Called the local dlmenswn For spin-S
systems, {|i)} = {|s* = —=S),...,|s* =5)} and d = 25+ 1. For spinless fermion systems,

{]9)} = {|0),|1)} and d = 2. For bosonic systems, {|i)} = {]|0),|1), -} and d = oo (we
set the cut-off dy.y on d in actual numerical calculations). Given pure state |¢) in this
system can be expressed by a wave function ¢;,4,..i, ,

d

) = Z Ciyig-iy, 1172+ 1L) - (3.8)

11191, =1

Here, |iyig---ir) is a tensor product of the basis of local Hilbert space and constitutes
the complete orthonormal basis of H. Matrix product state {I', A\} for |¢) is defined? as

d Xi
Z Z F[”“A Ul \2 .. ple=tie-1 y[L=1p[Elie liyig ). (3.9)

Q17 a2’ a2 Qp 21" Q@1 ar—1
41421, ap-ap, 1 =1

4 There are two major notations of MPS. We used I'\-notation here. The other notation is A-notation

Z Z S ARl Al AL iy i),

919200, Q1 QUL 1

which is often used in the DMRG literature.
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Figure 3.4: A diagrammatic representation of MPS.

This seems complicated at first sight, but a diagrammatic representation in Fig. 3.4 is
helpful to understand the structure of tensors. Note that the bond dimension y; depends
on site 7. If we regard tensors FL@Z}IQZ as x;_1 X x; matrices and )\([i]l as x; X x; diagonal
matrices for each 7 (Fglil and F[oéLL]iLl as 1 X x1(r—1) vectors), [¢) can be written as the
sum of products of matrices,

wy= % (fmn)T WPl 3R UE-1in o JE-IFL o) (3.10)

d1igig,

This is the origin of the name Matriz Product States.

One of the advantages of using MPS representations for quantum states is that MPS
requires the smaller number of parameters than the usual wave function descriptions
Ciyipi, do. In order to retain the information of wave function ¢;,..i,, d* ~ exp(L)
parameters are needed. On the other hand, at most dy?L + Ly parameters are needed
to store the tensors I' and A of MPS (x := max;(x;)). The value x determines efficiency
of MPS. As we will discuss later, y is roughly estimated by the entanglement entropy
of [¢). For general states in Hilbert space, or volume-law states, x scales as exp(L) and
two representations (wave functions and MPS) are equivalent in terms of the amount
of information required to express the states. However, for the ground state of local
Hamiltonian in one dimension, or area-law states, x does not scale as L (in gapped
systems) or scales as polynomials of L (in gapless systems). In both cases, we can bound
dx*L+ Ly < poly(L). This is far smaller than exp(L), and therefore MPS is more efficient
than the wave functions to express the ground state of local Hamiltonian.

3.3.1 Schmidt decomposition

Schmidt decomposition of a state in Hilbert space is essential to construct (canonical) MPS
representations for general quantum states. In order to define Schmidt decomposition, we
first introduce singular value decomposition for general matrices [50, §2.5].

Singular Value Decomposition (SVD). Let M be a my x my matriz. Singular value
decomposition of M 1is defined as

M =USV, (3.11)

where U and V are my X min(mq, ms) and min(ms, ms) X mo matrices which satisfy
UU =1 and VVT =1, S is min(my, mo) xmin(m,, my) diagonal matriz with non-negative
diagonal elements S, > 0. S is unique up to permutation of the diagonal elements. When
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my = me, UUT =1 and VIV =1 also hold and U and V are unitary matrices.

Diagonal elements of S are called singular values of matrix M. We can define {S,} in
descending order and omit zero(s)® from them, S; > Sy > --- > S, > 0. x depends on
matrix M and satisfies 1 < y < min(mq, my). Then we can write down SVD as

X
Mi; = UiaSaVaj, Sa > 0. (3.12)

a=1

We will use this notation of SVD in the following.

By using SVD, we define Schmidt decomposition of a state [¢). Let {|i),}*, and
{14 B}?zl be complete orthonormal bases of two subsystems A and B, where AU B is
equal to a total system. [¢) can be expanded as

da,dp

) = Z Cij |14 17) 5 - (3.13)

i.j=1

Coefficient matrix ¢;; is decomposed by SVD as
X
Cij = Z Um)\aVaj, )\a > 0. (314)
a=1

Here we write the singular values as A. Putting this decomposition into Eqn. (3.13), one
obtains

da,dp X X
W)= 3" S UiahaVas i) 4 lids = 3 Aala) 4 ey, (3.15)
ij=1 a=1 a—1

where
dA dB
)4 = Uiali)a, la)g = Vajli)y- (3.16)
i=1 j=1

) = 351 Aala) 4 ) g, {la) 4 g} and {Aa} are called Schmidt decomposition, Schmidt
vectors and Schmidt values, respectively. Because of the conditions UTU =1 and VV =

1, {|a>A,B}§=1 are orthonormal ((a|ﬁ>A7B = 0ap). From this property, >~ (Aa)? = (Y|¢) =
1 follows if the state |¢) is normalized. Besides, the reduced density matrix py4 is written

down in a simple form,

pa=Trp (1) (¥]) = Trg (Z WHINER <5\B> =3 a)la) 4 fal, . (317)

a?ﬁ

[0}

Entanglement entropy Sj4 is

Sa=—=Tra(palnpa) == (Aa)’In(Aa)*. (3.18)

[0}

5 Here we assume M # 0.
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Note that Schmidt value decomposition depends on the way of dividing total Hilbert
space.

The number of Schmidt values, y, reflects the quantum nature of |1)). When x = 1,
|1) is a direct product of two states in each subsystem and can be considered as classical.
X > 1 means that two subsystems A and B are entangled and that [¢) cannot be written
as a classical direct product of two states. If two subsystems are maximally entangled, xy =
min(da, dp), Ao = 1/,/X and S4 = In(x). Conversely, when we fix x, the states written
in the form of Schmidt decomposition (3.15) can represent states that have entanglement
entropy S4 = In x at most. This argument implies a rough relation® between y and Sy,

X ~ €4, (3.19)

3.3.2 Construction of MPS for arbitrary states in a system

To prove that any quantum state can be expressed in a MPS form, we repeatedly apply
SVD to a wave function of a state. Given quantum state [¢)) can be expanded as

) = D Cirigeaiy inia L) (3.20)
91921,

As a first step, we regard iy - - iz as one index and perform SVD for matrix ¢;, (iy...i, ):

SVD [1] [1]d1 y [1] 7 /(1]
Ci,(ia+ir) ZUZUM ai a1 (ig-+ir) ZF A OJVOCI(ZQ “ar)’ (3.21)

a1=1 a;=1

This is actually Schmidt decomposition of |¢) for the subsystem of site 1 and the subsys-
tem of site [2--- L],

) = Y Cirigeiy linia-oin) = > Tty (igig) |11) |12+ L)

i102-+1], i1l Q1

= Z Al T2y (3.22)

a1=1

Ji 1 : .
T[l] Z R Jin) Tc[i )= Z Vil}(iQ...iL) lig -+ -ip) . (3.23)

dgir

where

Schmidt vectors {|7es) Yo, and {|7e )}, are orthonormal vectors in Hilbert spaces Hy
and Hp...;;. Next we apply SVD to

v =yt (3.24)

Quig-ig a1 7 o (io-+ir)

We obtain I'® and A? by

by regarding a;is as one index, V am)(w...m-

7l SVD Z [l [21 Z A2z A[lem (3.25)

(cri)(i3-+4r) (a1i2)an 042 ag (i3+++i1) a1 ara”tae V as(iz-in)”
az=1 az=1

6 This is a physical, not mathematically rigorous relation. What we can say rigorously is that the
value of entanglement entropy sets restrictions on the distribution of the singular values {\;}X_;, not on
the value x itself. The detailed discussion is found in Ref. [44].
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Note that we define FE}ZQ as U

(aniz)as
of SVD, /\[oﬂ > 0. Using I'®!, we can define orthonormal vectors in Hilbert space H12) and
His..11:

/ )\al, which is always possible because of the property

2y = AR |7l = > THRANTEE Jiyiy) (3.26)
12001 1112001
2 . .
’ [3 L]> = Z Va[Z](iS"'iL) ‘23 e ZL> . (327)
igeig,

Orthonormality of {|7’a2 ) ta, follows from that of {|Ta1>}a1 and the property of matrix
(URHTUE = 1. Again, this is Schmidt decomposition of |/} for the subsystems [12] and

Z A2 2Ty |1y (3.28)
as=1

One can prove this equation from the definitions of ', T X[} and AP
We repeat this procedure of SVD until the end of system is reached (k = 2,--- , L—2).

(entnr1)(inpein) )\O‘k‘/(aklkﬂ)(lmz “4r)
SVD =
Y [k+1] [k+1]y [k+1]
- Z U(akik+1)ak+1>\ak+1Vak+1(ik+2---iL)
Ock_»,_l*l
. [k] To[k+1)i (k1] [k+1]
o Z Aakfakakfl“)\akﬂ Vak+1(zk+2 ‘i)’ (3.29)
k41
™y = Y AERE ) i)
Ihp1Qk
- Z F 1]“ )\Oﬂr([flgz ’ F[olj‘:(_)zlljj_kl-’—l |21 o 'L.k+1> 5 (330)
11 T4l
Qg
[ R [N [k+1] . .
T ]> o ) Z V"‘k+1(ik+2'"iL) ‘Zk+2 . .2L> ) (3'31)
h2iL

Finally, we obtain a MPS representation of |)

) = Z Ciyoiy, |11 L)

i1-ig

- Y A, ol

i1l
a1

- Z i )Wl A2y )

a1 araetag Y agizeir

= ) TR o\ g ) (3.32)
110
1o —1
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Figure 3.5: Diagrammatic representation of the construction of MPS for arbitary states

‘¢> = Zil"'iL Ciy-ig, ’7/1 . ZL>

with Schmidt vectors for decomposing the system into Hi..,) @ Hppg1...1

Xk
) = Y ATl [l (3.33)
ap=1
|T([X1k-~~k]> — Z Fglil)\gl .. F([)’flli—klak iy - ig) (3.34)
11l 1
o101
ety = >0 TRRIe AL T i i) (3.35)
lgt1-0L

A1 L —1

A diagrammatic representation of this construction of MPS is shown in Fig. 3.5.

Let us discuss what determines the bond dimension of MPS, x := maxy(xx). xx
is the number of Schmidt values for dividing the system into sites [1---k] and sites
[k+1--- L]. Therefore, from the property of SVD, x; < min (dim H1...k), dim H[k+1~~~L}) =
min(d*, d“=*). This yields a general bound

X = mAx xp = max (min(d*, d*%)) < d"/2. (3.36)
Furthermore, the decompositions that we used to construct MPS are Schmidt decompo-
sitions indeed, so x is related to the entanglement entropy of |¢). Recalling the rela-

tion (3.19), we know
Sy ~Inxy & xk~ ekl (3.37)

Hence a physical estimation of y is obtained:
X ~ eSmax. (338)

Here Spax is the maximum value of entanglement entropy of |¢) for all possible divisions
of the system.
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Figure 3.6: Canonical conditions of MPS for 1 < k < L.

For a vast majority of states in Hilbert space, the volume law of entanglement entropy
Smax ~ L holds and therefore x scales as exp(L). As we already discussed, in that case
MPS representations require the same number of parameters to describe states as the
usual wave functions do, and MPS is not efficient to express states. However, for the
ground state of local Hamiltonian, the area law ensures Syax ~ O(1) in gapped case and
Swmax ~ (¢/6)In L in gapless case. This leads y ~ O(1) in gapped case and y ~ L% in
gapless case. In both cases, the descriptions by MPS are far efficient than that by wave
functions. This is why MPS is suitable and efficient to describe the ground state of local
Hamiltonian.

3.3.3 Canonical condition for MPS

We have constructed MPS for any state in the previous subsection. However, there are
different sets of matrices that express the same state. In other words, there is a choice of
freedom in MPS representations. Specifically, if MPS {T'¥lix \FILL_represents [¢), then

Tlkix — ( X[k—u)—l T [Flix (k] (3.39)
Nk — (X[k])—l Ay R1] (3.40)

is also a MPS representation” of |+) for arbitrary invertible xz x Yz matrices X,

Among many MPS representations for a given quantum state, we introduce canonical
conditions for MPS, which greatly reduce computational cost of physical quantities. The
canonical conditions of MPS are defined as®

S T (K" = )
i,
k—1]1[k]i k—1] (k)i o

Z )\[ak—l]rgllfkla ()\[Olk—l}rak—klﬁ) _60‘5' (3‘42>

T, —1

These two equations are called as right canonical condition and left canonical condition
(diagrammatic representations are shown in Fig. 3.6). As we will see later, retaining
canonical conditions of MPS is crucial for efficient computation of physical quantities.

T For k=1 and L, T = pltla x [ TlLlic — (X[Lfl])_l rlLlic
8 For k=1 and L, ¥, TH)™ (FE”]) = Gagy 3, T (F[BL“L) = bup.
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It is proved that [51] MPS representations for given state that satisfy canonical con-
ditions are unique up to permutation of the degenerate Schmidt values. The I" and A
obtained in the last subsection satisfy the canonical conditions (this is shown by straight-
forward calculations). Therefore, it is always possible to represent any quantum state in
a canonical MPS.

30



Vol. 4, No. 3 043601 2015 8
Chapter 3. Numerical Methods

3.3.4 Calculation of physical quantity using MPS

We will show MPS expressions of expectation values for one-site and two-site operators.
The canonical conditions of MPS are important to obtain simple formulae for the expec-
tation values.

Expectation value for one-site operator

Let Oﬁ” be a one-site operator acting nontrivially on site [ and trivially on the other sites,
OE” —1® --®0;®---® 1. The expectation value (¢|O[1[] |1)) can be written as

(101 v)
= > (TR T ) (Tt ) G GO i i)

11L,J1 L

{a}.16}
_ iy (i) 1) (2 ]2z )" -1 07 0A s (ST
- Z (F[a}l (Fﬁ1 1) ) (/\LJF[OZEO?Q </\51Fﬂ1522> > (ALZ—EF[O‘]l—llalA[a]l <jl|01,ll> <A51—1 Fﬁlj—llﬁlAﬁJ )
11-9L,,]1
{o},{6}

L—1Jip_1 \[L—1 [L—1)ip—1y[L-1]\" Lli Mz \*
Xowee (FLLfgall/,fllA[O‘L—l] (FﬁL—Qﬁi—iAﬁL—1> ) <F[04L]7L1 (FBL—L1> )

_ 1] [2]d W2z \* -1 (1 0 /1A (=13 UAW
- Z 60‘151 (A[OAFHDZ <A51F51522> ) <)\[al—1]r£¥]l—llal)\£1}l <jl‘ol‘zl> ()\5171 Fﬁl{llﬁl)\ﬂl> )

1201, I

{a} {8}
L—1)ir_1 \[L—1 [L—1]ip_1\[L—1]\"
. (FLLJQLL 1 N (Fm_ﬁi_i AﬁH) ) S o
_ i A I—1]-[17 \*
- Z 60‘252 T ()\gl—ll]rg}lilalA[Oljl <]l|01‘ll> ()\[Bl—l]r[ﬂy—llﬂz )\[BD ) T (5O‘L*2ﬁL*2
131, —2, I
Qg2
B2+Br—2
= > AL NGOy (AT AR (3.43)

UL J1,00— 1,00

A diagrammatic representation of this computation is shown in Fig. 3.7.

Therefore, we can calculate expectation values of one-site operators by using only three
tensors of MPS, A" Al and T, The canonical conditions of MPS play an important
role in the derivation of this formula.

Expectation value for two-site operator

Let Og U he a two-site operator acting nontrivially on site [ and [ + 1 and trivially on
the other sites, 0[21,l+1} —1® - ®0,®---®1. The expectation value (¢|O¥’l+1]|w) is
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expressed in a simple equation by similar calculations as in the previous one:

(]0y )
_ Z (}\[Zfl]r[l]il )\[l]r[l+1]il+1)\[l+1}> <jzjz+1\02|iziz+1> <>\[171]F[l]jz )\EFUHUM)\UH]) ‘

a1 1ot aqagr Clogg -1 o1 Brouy1 Q41

U+ 15000141
Qp—1,00,00+1

Bi
(3.44)

A diagrammatic proof for this formula is shown in Fig. 3.8. Again, due to the canonical
conditions of MPS, we can calculate the expectation value by using only several tensors
of MPS. Expectation values for n-site operators can be expressed in the same way.

3.3.5 Example of MPS

We show some examples of MPS representation.

S = 1/2 Néel state

S = 1/2 Néel state is the ground state of anti-ferromagnetic Ising chain and written as
INéel) = |--- T} - +). Tt is a product state, and therefore has a simple MPS representa-
tion with bond dimension y = 1:

A2n) — \2nt] (3.45)
pent —q el — g (3.46)
PRttt — g pleetid — (3.47)

The index «,, is omitted because x,, = 1 for all sites n.

S=1/2 dimer state

S = 1/2 dimer state is a chain of singlet pairs \%(H) 1y =411,

1 1

|Dimer) = 7 7

MPS for the dimer state has the bond dimension xs,:1 = 2 and xo, = 1:

A2+ <

(M1 e =1 M) @ —= (M5 1)y = s M) @ -+ (3.48)

o4
ko

)) pensilt (1 0y, Tk (0 1), (3.49)

Al =, plait = ( 01) . Tlrl = ((1)) . (3.50)
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Figure 3.7: Expectation values of one-site operators.
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Figure 3.8: Expectation values of two-site operators.
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S=1/2 superposed dimer state

S = 1/2 superposed dimer state is the superposition of two dimer states,

|Superposed Dimer) o< (M1 )y = )1 [1)2) @

7 7 (|T> H>4 - |¢>3 |T>4) ®

+- —(! do 1 =)o 1)) ® —(\ )2 s = )5 1)2) ®
V2 V2 31172
This state can be expressed as translational invariant MP
/2 0 0 0 0 010
A= 0 1/v/2 o |, M =1]1 o],r"=1(0 0 1], (3.51)
0 0 1/2 0 —1 0 000

although it is not normalized and canonicalized. This is one of the non-trivial examples
of MPS.

3.4 Time-Evolving Block Decimation method

In this section, we review the Time-Evolving Block Decimation (TEBD) method. It was
proposed by Vidal in 2004 [15] and extended to infinite systems in 2007 by himself [52].
TEBD is an algorithm to calculate imaginary or real time-evolution of a state,

e |aho)

T [y T (1)) = e o) , (3.52)

(7)) =

in an efficient and clear way using MPS. TEBD is mathematically equivalent to well-known
DMRG method, if we formulate DMRG in MPS language. However, practically source and
tendency of error in computation are different from each other due to the different schemes
of truncation (approximation) in the algorithms. The numerical difference between TEBD
and DMRG is reviewed in Ref. [36].

There are two important points in the TEBD algorithm: decomposing time-evolution
operator into local mutually-commuting terms and maintaining canonical forms of MPS
after the action of time-evolution operator.

3.4.1 Suzuki-Trotter decomposition for time-evolution operator

We introduce Suzuki-Trotter decomposition for time-evolution operator. This decom-
position makes time-evolution operator into product of local and mutually-commuting
terms.

Consider Hamiltonian that can be written as a sum of two-site operators,

H = Z Hn,n+1 Z H2n 1,2n + Z H2n 2n+1 — even + Hodd; (353)
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where H,, ,, 41 is a two-site operator on site n and n + 1. First we divide time-evolution
operator? U(7) = e~™ into small time steps, 07 = 7/N < 1 (N is the total number of
time steps):
U(r) = e ™ = (7)™ (3.54)
Then e %" is decomposed into terms which contain only Heyen or Hogq:
e 0TH =07 (Hevent+Hoda)

6_67Heven€_67Hodd _|_ 0(57-2>’
6_%Heven6757Hodde_%Heven + 0(67—3)’
_&Hevene_aéTHodde_wHevene_(l_Qg)&THodd

w _ _ 0ot
Hevene 957Hodd€ Heven _|_ 0(57- ) 0 —

e
~ 1.351.

2 21/3
These decompositions in each line are called 1st, 2nd and 4th order Suzuki-Trotter de-
composition, respectively.

Each term of Hoqq (Heven) is mutually-commuting and the time-evolution operator
e~ 9Hoda (g=9mHeven) can be written as a product of local terms,

o0 Hodd — H e~ 07Han2nt1 _. H Von 2nt1- (3.55)
n n

3.4.2 Updating canonical MPS after the action of local operator

As explained in the previous section, the canonical conditions of MPS are crucial to
calculate physical quantities efficiently. We need to make the canonical conditions of
MPS to hold after the time-evolution. Here we discuss the way to calculate canonical
MPS after the action of local operators. For local operators, we have to update only
several tensors to retain a canonical form of MPS.

Action of one-site unitary operator

Consider a one-site unitary operator on site [,
U= U lin) (Gl - (3.56)
i,J1
The problem is how to obtain canonical MPS for |¢') = U |) when
d Xi
S il BIpRe AR NETUDIE i,y (3.57)
11290, OO —1

is canonical MPS. The answer is simple because of the locality and unitarity of the oper-
ator. We have only to change the tensor I'¥ into

Llllllal Z Ull]l Li]l]llap (3.58)

and keep the other {I', A} the same. The unitarity of the matrix U ensures that the
canonical conditions hold for the updated MPS.

9 When 7 is real, U (1) corresponds to imaginary time-evolution. For real time-evolution, we take
T = 1t.
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Figure 3.9: Updating MPS after the action of one-side operator U and two-site operator
V.

Action of two-site unitary operator
Consider a two-site unitary operator on site [ and [ + 1,

V - Z VJllllejll ‘Zlil'i‘l) <jljl+1| . (3.59)

U+ 15000141

Canonical MPS for [¢/) = V |[¢) is obtained by modifying the tensors T, T and AU,
To do this, we define a rank-2 tensor O, ), (i 1a:4,) a0d apply SVD to it:

. -1 [t l +1 1+1 Iy
@(ilo‘l—l)7(il+1o‘l+1) T Z (/\L‘l 1]F£Y]l]llaz)\L}zrf[lj;w]ﬁﬂ)\‘[l;l]) V}lljll-:’ (3‘60)
Judir,on
X1
SVD Nl [1)e l [[+1]
@(izazq)v(ilﬂaz“) - ZU(izalfl)ﬁ)‘,[@}vﬁ(iz+1az+1 ZAolq 11]Fa]l,l ]FﬁalﬂlH)‘Z;ll]
p=1
(3.61)

Note that the updated tensors can have larger bond dimension y; than before. If x;_; =
Xt = X141 = X, the size of tensor O ;,a, ), (i1, 100,1) 18 dX X dx, so X; could be dx at most.
The growth of the bond dimension is physically interpreted as increase of entanglement
between sites [1---1] and sites [ + 1--- L] due to the action of V. This is an important
point in practical numerical calculations, as we will see below.

These procedures to update MPS are summarized in Fig. 3.9.

3.4.3 TEBD algorithm

TEBD algorithm is as follows (we take imaginary time-evolution as an example. Real
time-evolution can be done in the same way):

(a) prepare canonical MPS for |1y) on which time-evolution operator to act.
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(b) divide the time evolution operator U(7) = e~ ™ into small time steps and perform

Suzuki-Trotter decomposition. Take 1st order decomposition for example, e 97# =
eféT(Heven+Hodd) ~ eféTHevene*éTHodd

(c) calculate ') = e=97Hoad |9} in MPS language. Now the time-evolution operator
is decomposed into a product of local operators ‘72”72“4_1 (Eqn. (3.55)), we should
update the tensors 2" T2+ and A7l for every n according to Eqn. (3.61) (note
that the computations can be done in parallel for n). However, two problems appear
in the updating processes: unitarity of the time-evolution operator and truncation
of the state. We discuss these two problems below.

(d) calculate e=97Heven |9} in the same way and repeat the time-evolution until desired
result is obtained. In the case of imaginary time-evolution for ground state search,
convergence of energy (expectation value of Hamiltonian) in the time-evolution is
one of the indicators to stop the evolution.

Unitarity of imaginary time-evolution

Imaginary time-evolution operator U (1) = e~™ and the decomposed operator ‘7271’2”_}_1 =
e~ 0THzn2n4+1 gare not unitary when 7 # 0. As a result, the updated tensors [2n) Dl2n+1] \[2n]
in Eqn. (3.61) do not satisfy canonical conditions of MPS. Furthermore, the normalization
condition of a state Y X*"_ (Aa,,)* = 1 is violated after the imaginary time-evolution. In
the TEBD algorithm for imaginary time-evolution, we have to recover the normalization
of a state by modifying Schmidt values

Al

(3.62)

after SVD. On the other hand, the problem of canonical conditions is ignored!® in the
algorithm because the violation is small enough when 07 < 1.

Truncation

In practice, we have a limit xpax for the bond dimension of MPS because an amount of
memory storage of computers is finite. However, as we discussed, the bond dimension
of the updated tensors could be larger than before. If new bond dimension x; becomes
larger than Y., we have to truncate Schmidt vectors which have small values:

X1 Xmax

[0y = D A L) = Y N ) R (3.63)

a;=1 a;=1

10 Detailed discussion on this point is found in Ref. [53].
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In addition, we should modify AL

(3.64)

in order to normalize |¢)'). Truncation error € is defined as

2
d 1 [2n]
ZaX:Xmax“rl (Aa )
s, ()

The truncation error gives a good estimate for accuracy of numerical calculations.

e=1-—

(3.65)

Source of error

There are two sources of error in TEBD: one from Suzuki-Trotter decomposition and
the other from truncation. The first one grows linearly in time. It can be reduced
by taking smaller time step 67 or employing higher-order Suzuki-Trotter decomposition.
Both treatments increase the total number of SVD to simulate the same duration of
time. The error from truncation grows exponentially in time, and become important in
longer time scales. It is reduced by using lager Yma.x, which results in the increase of
computational cost of SVD at each time step (computational cost of SVD for dy x dx
matrix is O ((dx)?)). The characteristics of these two errors are thoroughly discussed in
Ref. [54].

3.5 iTEBD

In this section, infinite Time-Evolving Block Decimation (iTEBD) method is reviewed.
This method is an extension of TEBD to infinite systems. The iTEBD can simulate
systems in the thermodynamic limit directly, without any extrapolation of system size.
In this study, we use iTEBD to simulate the dynamics after the flux quench.

3.5.1 infinite MPS

In iTEBD, we assume spatial periodicity of tensors in MPS, and quantum states are
expressed by such MPS of infinite length, infinite MPS (iMPS). By assuming periodicity,
we have only to treat several tensors to simulate infinite systems. If the support of each
term in Hamiltonian is m sites at most, the periodicity must be set to be larger than
m in order to construct iTEBD method. We note that assuming periodicity to states
is potentially dangerous because it restricts possible orders to be commensurate to that
periodicity. For example, dimerized order (which has two-site translational symmetry)
cannot be expressed by iMPS with odd-number site periodicity. We should be careful
about what orders could appear when assuming the periodicity of tensors in MPS.
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The canonical conditions of iMPS are defined as the same as MPS. In the same manner
as finite MPS, the canonical conditions allow us to compute physical quantities per site
by using only a few tensors in iMPS.

3.5.2 Algorithm

The algorithm of iTEBD is simper than that of TEBD. For simplicity, consider iMPS
with two-site periodicity and Hamiltonian which consists of nearest-neighbor interaction
terms. We follow the notation of Vidal [52] below. Tensors of iMPS are written as

F[Zn] _ FA7)\[2n] _ )\A’ F[2n+1] _ FB, )\[2n+1] _ )\B’ (366)
and a state [1) is expressed as

i) = Z DB \Bpdiz ZADBis \B ) (3.67)

apa1” 1T o2’ T a3’ Ca3
{iH{a}
Hamiltonian h of the system is

b — Z h[n,n+1] _ Z h[2n71,2n] + Z h[2n,2n+1], (3.68)

and we perform 1st order Suzuki-Trotter decomposition for the time-evolution operator
U(67) := e 07,

Ut = exp(—drhlrrtiy, (3.69)
U(?TB — ® Ug—nﬂn-l—l}’ U5BTA — ® Ugn+1,2n+2]7 (3.70)
U(st) = UBAURE 4+ O(072). (3.71)

For 2nd order decomposition, we can use U(d7) = U 5BT’>2U QBU(;BT% + O(073).
At each time step, we update tensors I'4, 'B, A4 (I'4, T'B, A\B) after the action of the

decomposed time-evolution operator U4" (UP4). For example, after the action of U4?,
we obtain ['4% and A4 by

i’ By’ ABij
Qi) = Y <Affﬁ /AE‘IFglﬁAf) UL (3.72)
i/7j/76/
4 A
SVD <4 S ASB
Olia).n) = D XiiaysAiYagy = D ATAENT A, (3.73)
B=1 B=1

A diagrammatic expression of the update is shown in Fig. 3.10.
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Figure 3.10: Diagrammatic representations of the iTEBD algorithm. Left panel shows
the whole picture of update of tensors after the action by U4Z. Right panel shows that
the update procedure to obtain new tensors I'*, T2 A4, Figures are taken from Ref. [52].
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In this chapter, we present numerical results of the dynamics of spin current and discuss

them.

4.1 Numerical data of the dynamics

In numerical calculations, we first prepare the ground state of the XXZ chain with flux

1 . 1 .
Hy=—-3" (56195;% + 5678 S + AS?S?+1>

by imaginary time-evolution using iTEBD method:

e~ "o |¥ini)
) = lim
Oes = I o=t [y T

where [¢;,;) is initial state of the imaginary time-evolution.
Then, real time-evolution driven by the XXZ Hamiltonian without flux

1 1
Hy=-)Y <§STS;H + 550 Sk + ASfo+1)
is performed on the obtained ground state |0) g,

(1) = " [0) s

We use iTEBD again for the real time-evolution.
Numerical calculations were done in the following parameters:

A = +0.3,40.5,+0.8,—1.0,-1.2, —1.5,-2.0, (+0.1),
T T T N T T

f = ——~ -~~~ T
27376 100 20" 30

(4.1)

(4.3)

(4.4)

A is the strength of interactions and || represents the size of quench (for larger |0| the
initial state becomes more excited one). Since we employ iTEBD, we can treat the system
in the thermodynamic limit L — oo directly without resorting to any extrapolation. There
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is no finite-size effect in our calculations. Instead the bond dimension y of MPS determines
accuracy of calculations. As we discussed in the last chapter, in practice the truncation
error could appear in the iTEBD algorithm due to the finiteness of x. In order to reduce
the truncation error and simulate the dynamics for longer time, we have to take larger .
We carefully check the truncation error and other potential errors in iTEBD calculations,
and adopt data in reliable time scale. Technical details are explained in appendix A.

Numerical results of the dynamics

We show numerical results of the dynamics of the spin current J(¢) in Fig. 4.1 and 4.2.

We summarize the dynamics as following. For large |0|, §# = —7n/2 and —n/3, the spin
current shows oscillation and decay for all A (the data for A = £0.1 have too long
periods of oscillations and we cannot see them clearly). For smaller |0], § = —7/6 to

—m/30, we observe qualitatively different dynamics for A > 0 and A < 0. For A > 0, the
oscillation in long time scale (¢ 2 10) is not visible and the decay of the current is small
(we will discuss the visible oscillation in short time scale (¢ < 10) later). The spin current
becomes stationary within the accessible time scale of numerical calculations. For A < 0,
the oscillation in long time scale is visible, although for small || and |A| the period is too
long for us to confirm the oscillation. The decay of the spin current is larger than that of
A > 0 cases. Besides, the relaxation time is larger than in A > 0 cases, and we cannot
observe stationary states withn the accessible time scale of numerical calculations.

Regarding the long-time limit of the spin current, we observe that it is non-zero in
gapless case (—1 < A < 1) and zero in gapped case (A < —1) for any 6. However, we
mention that for A = —0.8 and —1.0 it is difficult to judge whether the long-time limit
is zero or non-zero from the numerical data because of the long time scale of relaxation.
We will discuss these points in section 4.2.

Before analyzing the numerical data quantitatively, we comment on the oscillation in
short time scale (¢ < 10) that is visible even in A > 0 for small |#| (Fig. 4.2). This oscilla-
tion survives only immediately after the quench and it is observed for almost all parameter
regions. Therefore we argue that it dose not contain much meaningful information of the
system. We do not discuss this oscillation further in this study.

Fitting for the numerical data. To quantify characteristics of the dynamics from
numerical data, we exploit a simple and empirical fitting function,

ft)=c+ (A+ Beos(wt + ¢)) e "7, g(t) = c+ Ae™"/". (4.5)

We use f(t) for fitting when the oscillation in long time scale is visible. Otherwise we
use ¢(t) instead. Therefore, by this fitting we analyze the oscillation in long time scale
only and the oscillation in short time scale is not treated. The fitting is well for short
times, roughly up to the first cycle of oscillation in the case of f(¢). Examples of fitting
are shown in Fig. 4.3.

Among the parameters of this fitting, we focus on ¢,w and 7 as the long-time limit of
the current, the frequency of oscillation and the relaxation time, respectively. Below we
discuss these three features of the dynamics in order.
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Figure 4.1: Numerical data of the dynamics for § = 7/2 to—m/30.
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Figure 4.3: Fitting for § = —7/2 and § = —7 /6. For short times, fitting is well.
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Figure 4.4: Left panel: J(t = oc0)/D. Right panel: 1 — J(t = 00)/(D]6|). Note that we
cannot obtain reliable data for A = —0.5, —0.8, —1 when |#| = 7/30 ~ 0.1.

4.2 Long-time limit of the current

As we discussed in section 2.2.1, linear response (LR) theory predicts that the long-time
limit of the current J(t = o0) is given by the Drude weight D,

J(t =00) = DJb|. (4.6)
Exact value of the Drude weight for the XXZ chain is known as [23]

T osinp

D=-_"8_
4 p(m — )

p = arccos(—A). (4.7)

D is non-zero only for —1 < A < 1 and otherwise zero. Furthermore, D is even function
of A except! at A = +1. Therefore LR theory predicts that J(¢ = co) is non-zero only
for —1 < A < 1 and determined by the absolute value of A (irrespective of the sign).

As mentioned in the last section, for any 6 we observe that J(t = 0o) remains non-zero
for gapless case (—1 < A < 1) and decays to zero for gapped case (A < —1). Thus our
numerical data are consistent with LR prediction, as far as whether the long-time limit
of the current vanishes or not.

However, the value of J(t = o0) itself deviates from LR prediction, especially for
large |6|. This behavior is natural because LR theory is not reliable when |6] is large.
We plot J(t = 00)/D in the left panel of Fig. 4.4. If LR theory is exact, J(t = c0)/D
must be |0|. As expected, when |f] becomes small J(t = 00)/D gets to close to |6].
Furthermore, we find that the deviation from LR theory greatly depends on the sign of
A. To see this clearly, the normalized deviation from LR theory 1 — J(t = o0)/D|6|
is plotted in the right panel of Fig. 4.4. For ferromagnetic interactions (A > 0), the
normalized deviation from LR theory shows power-law in |f]. In contrast, for large anti-
ferromagnetic interactions (A < 0), J(t = oo) still deviates from LR theory even for small
6], about 7/20 ~ 0.16. We expect that if || is made to be smaller than the values of our
numerical data (|#] < 7/20) the deviation will obey power-law in |6| even for A < 0 case.

L' At A =1, the Drude weight is not continuous with respect to A. iigllD(A) =1/4, D(A>1)=0.
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Figure 4.5: Frequency w obtained from fitting of the numerical data.

It is surprising that the deviation from LR theory, or nonlinear response of the system, is
larger for A < 0 than for A > 0.

We may attribute the different behavior of the deviation for A > 0 and A < 0
to superfluidity of the system. In one dimension, superfluidity is absent in the strict
sense. However, one can observe superfluid-like response in one dimension as dynamical
properties of a system [55]. For anti-ferromagnetic interactions (A < 0), or repulsive
interactions in spinless fermion language, superfluidity of the system is weaker than in
the case of ferromagnetic interactions (A > 0, attractive in spinless fermion). Therefore
for A < 0 the large portion of normal components dissipates and J(t = oco) gets smaller.
The smaller value of the long-time limit of the current results in? the larger deviation
from LR theory.

Finally, we note that this deviation is not an artifact of the fitting. For A < 0 and
small |f|, the relaxation time is so large that it is not easy to obtain reliable value of
the long-time limit from numerical data. Nevertheless, the decay of current for A < 0 is
obviously larger than that of A > 0 when we look at the dynamics (Fig. 4.1). Considering
that in LR theory J(t = 00) depends on the absolute value of A (independent on the sign
of A), we can conclude that the large deviation from LR for A < 0 is not an artifact but
an intrinsic behavior of the system.

4.3 Frequency of oscillation

The frequency of oscillation is plotted in Fig. 4.5. As already mentioned in section 4.1, we
discuss the frequency of oscillation in long time scale only. We found that the frequency
w is proportional to |A|. Furthermore, the proportionality constant (the slope of the plot)
is different among 6. In gapless phase, there are no time (or energy) scales other than A,
and therefore some dependency of the frequency upon A is not so surprising. However,
the explicit form w oc |A] is not trivial. Also it should be stressed that even in gapped

2 Numerically we found that J(t = 0o) is always smaller than the prediction from LR theory.
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phase (A < —1) the same relation w o |A| holds. In order to explain this relation, we
conceive of two scenarios.

4.3.1 Equation of motion of spin current

One possible explanation for the relation w oc A is as below. The second derivative of the
equation of motion for the spin current is
d? .
CI(t) = ([iHy, [iHo, ) (1)
A? A? ; .
= _Ij(t) TN Imz (S71S7 S5 Sia) (1)

A — — — z z — zZ Q- z
N Imz (S Si32) (1) = (Si157 515520 (1) — (S71S7S711502) (8) + (S7157553.157 1) (1)) -
(4.8)

If we can neglect the last two terms in the right hand side, this equation becomes simple
one describing harmonic oscillations, and its frequency is given by w = |A|/2. Although
this is an attracting explanation to the relation w o |A|, this cannot explain the different
proportionality constants among 6; the frequency of harmonic oscillation is independent of
the amplitude (we expect that @ is related to the amplitude of oscillation). The equation
of motion could help us to understand the behavior of oscillations, although its physical
meaning and the validity for neglecting two terms are not clear.

4.3.2 Dynamics of momentum distribution n,

As another way to reveal the nature of the dynamics and oscillation, we trace time-
evolution of the momentum distribution in spinless fermion picture,

gy s 1 —igrs
ng = (cj]cq), Cqg = i Ze Tie, . (4.9)

Since the spin current is given by (J(t)) = N~' > sin(q)ny(t), imbalance of population
nq between ¢ > 0 and ¢ < 0 means non-zero current. Figure 4.6 and 4.8 show examples of
the dynamics of momentum distribution. At first, momentum distribution is the shifted
Fermi sea with momentum-shift by |#| (see also Fig. 2.4). After the flux is quenched to
zero at t = 0, the momentum distribution starts evolving. We observed two kinds of
oscillation in momentum distribution. One of them coincides with the oscillation of the
current in long time scale and could explain the origin of it. Besides, qualitatively different
dynamics between in gapless and gapped phase is observed, which gives an interpretation
to the bahavior of the long-time limit of the current.

Two types of oscillation

Two types of oscillation are as follows. One is the collective oscillation of the momentum
distribution 7, in which all momenta g participate. Amplitude of the oscillation is large for
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Figure 4.6: Time evolution of momentum distribution. Left panel: § = —7/3, A = —0.5.
Right panel: § = —7/6, A = 0.5. For the left case, the dip/peak structure and its
oscillation is observed though there are no such structures and oscillations in the right
case.

q close to the shifted Fermi point, k7. = 7/2—160|. This type of oscillation is observed for all
quench parameters. The other type of oscillation is the oscillation of dip (peak) structure
far from the shifted Fermi point. Almost only two momenta py and py — 7 participate
in this oscillation. The visibility of the second type of oscillation almost coincides with
the existence of the oscillation in long time scale (compare two panels in Fig. 4.6). In
addition, the period of the oscillation in dip (peak) structure matches with the period of
the oscillation of the current. Therefore we expect that the dip (peak) structure is related
to the oscillation in long time scale.

Taking into account that the dip and peak are separated by momentum 7, we can
construct a physical picture of the dynamics where only two characteristic modes far
from the shifted Fermi point are scattered by the Umklapp process. The oscillation of the
current is governed by the oscillation of population between the two modes. This picture
is highly non-trivial from the viewpoint of universal TLL, because in TLL the low-energy
excitations nearby the Fermi points dictate all of the physics in the system. The validity of
TLL picture is ensured by equilibrium renormalization group method and of course there
are no guarantees for TLL to be valid in nonequilibrium situations. Besides, we have
to treat the shifted Fermi sea in the flux quench, which is not considered by standard
TLL theory. Previous studies [19,20] on the interaction quench in the XXZ chain (see
section 2.1) showed that the dynamics after the interaction quench is well described by
TLL picture. As far as we know, our study is the first clear illustration in that non-TLL
structure strongly affects the dynamics of the system.

Let us discuss the relationship between the dip (peak) structure and the frequency of
oscillation. From the picture where only two modes govern the dynamics of the system,
we can consider a simplified two-mode Hamiltonian

€ 15} c
Heg = (cf, ¢}, r) ( 5 %_W) (Cp:’;) , (4.10)

where g, := — cos(k) is energy dispersion relation of spinless fermions, py is momentum
of the particle selectively scattered by the Umklapp process and S is an amplitude of the
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Figure 4.7: Left panel: comparing the momentum distribution with different 6 at A =
—0.5. Right panel: the momentum of dip, py, versus 6.

Umklapp scattering expected to be proportional to |A|. From this simplified two-mode
model we can deduce the frequency of the current,

woc /g2 4 | B2 (4.11)

This would conclude w ~ |A| for small ¢,,.

Finally, we mention the behavior of py as varying A and #. We calculated the value
of pg from numerical data as the momentum at the bottom of dip structure, and plot py
versus 6 in Fig. 4.7. Numerically we found
™

5 alf|, a=0.40 ~ 0.53 (depending on A). (4.12)

Do =

We have not yet understood the origin of this characteristic momentum py.

Qualitatively different dynamics between in gapless and gapped phase

There is qualitative difference in the dynamics of momentum distribution between in
gapless and gapped phase, irrespective of 6. In gapless phase, the shifted Fermi sea
structure in initial state is robust against time-evolution and it survives even after the
system becomes stationary (Fig. 4.6). The momentum distribution of the stationary
states looks like the shifted Fermi sea again with broader shoulder than the initial states.
Shifted, imbalanced momentum distribution results in the persistent current. Therefore,
the remaining shifted Fermi sea structure agrees with the non-zero long-time limit of
the current in gapless phase. On the other hand, in gapped phase, the shifted Fermi sea
structure in initial state is not robust against time-evolution and it disappears in relatively
short time scale (Fig. 4.8). In that case the whole momentum distribution moves towards
the center (¢ = 0) quickly and the imbalance of n, between ¢ > 0 and ¢ < 0 is lost, which
brings about J(t = oco) = 0.

This contrasted difference in the dynamics of momentum distribution between in gap-
less and gapped phase might be related to additional conserved quantities recently found
only in gapless phase [56]. Additional means that they are not obtained by the usual
algebraic Bethe ansatz. Those additional conserved quantities are responsible for ballis-
tic transport, or non-zero Drude weight, at finite temperature in gapless phase [56]. In a
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Figure 4.8: Time evolution of momentum distribution for gapped phase.
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Left panel:

0 = —7m/2, A = —1.2. Right panel: § = —7n/6, A = —1.2. In both cases, the whole
momentum distributions move towards the center (¢ = 0) and the current decays to zero.

similar manner, the additional conserved quantities that exist only in gapless phase would
prevents the whole movement of momentum distribution, although it is not clear how the
conserved quantities affect the dynamics.

4.4 Relaxation time

The relaxation time 7 is plotted in Fig. 4.9. When the time scale of the decay is much
larger than the accessible time scale of our calculations, we cannot obtain reliable 7 from
fitting. We omit the data in such cases.

In general, larger |A| and larger |f| result in smaller 7 (faster decay). This is natural
because the time derivative of the current d.J(t)/dt is proportional to A (Eqn. (2.18)).
When A = 0 (free fermion point), the spin current is conserved and 7 must be co. In
agreement with this fact, 7 seems to diverge as |A| — 0. From the plots, we cannot
conclude that 7 obeys exponential-law or power-law in A. The relationship between 7
and A might be complicated than the simple relationship between the frequency w and A,
w o |A]. We have not obtained a good explanation for the data of 7 yet. In the following,
we introduce an analytical result of the relaxation time in the bosonic flux quench, as a
possibly related result to our numerical data.

In bosonic case, the decay rate of the current (inverse of the relaxation time) after
the flux quench is well computed by the instanton method [57]. In that study, one-
dimensional Bose-Hubbard model at large filling v is mapped to O(2) quantum rotor
model and the decay of current is treated as a quantum tunneling between states with
different winding numbers. The decay rate of the current is estimated by the action of
instanton corresponding to such tunneling. Their conclusion is I' oc p?%~2, where T is the
decay rate of the current, p is momentum given to initial state and K is the Luttinger
parameter of effective TLL corresponding to the Bose-Hubbard model.

Motivated by this study, we plot 7 versus the Luttinger parameter K of the XXZ
Hamiltonian (K = 7 /(2arccos(A)), Eqn. (2.7)) in Fig. 4.10. The points of this plot are
not in line, which means that we cannot conclude simple relation between 7 and K as in
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Figure 4.10: Relaxation time 7 versus the Luttinger parameter K of the XXZ chain.
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the Bose-Hubbard model.
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Conclusion, Future Work

In this thesis, we study the flux quench problem in the S = 1/2 XXZ chain by numerical
calculations. We focus on two aspects: the long-time limit of the spin current and its
dynamics during the time-evolution.

We find that both are dependent strongly on the anisotropy (interaction) parameter A
of the XXZ chain and the amount of flux initially inserted. The long-time limit of the
current matches with the predictions of linear response (LR) theory for sufficiently small
initial flux. However, its nonlinearity (deviation from LR theory) is largely affected by
the sign of interactions. Anti-ferromagnetic interactions, or repulsive interactions for
spinless fermions, suppress superfluidity in the system and result in smaller (and also
further to LR theory’s) values of the current. Regarding the dynamics, the current decays
in time after the quench in all parameter regions and its time scale depends on the
strength of interactions and the initial flux. Furthermore, in the parameter region where
the initial flux is large or the interactions are anti-ferromagnetic (repulsive), the current
oscillates in long time scale. We numerically find that the frequency of the oscillation
is proportional to |A|. Remarkably, the dynamics of momentum distribution of spinless
fermions indicates that this oscillation of current is caused by excitations deep inside the
Fermi sea. This mechanism of oscillations cannot be explained by the effective Luttinger
model corresponding to the XXZ chain, which is in contrast with the previous studies on
different types of quench in the same XXZ chain.

As future work, we must reveal the nature of specific momentum py that appears
in momentum distributions. It will help us to understand the oscillation of the current
completely. Besides, the origin of nonlinearity of J(¢ = oo) is under investigation. It
would need deeper knowledge of superfluid-like response in one-dimensional systems. The
clear relationship between the relaxation time 7 and A also remains to be solved.
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Appendix A

Technical details on numerical
calculations

A.1 Details on numerical calculations, error estimate

For numerical simulations of the dynamics, we prepare the ground state of the XXZ
Hamiltonian with flux

1. 1
Hy=— Z <56ZGSZ-+S[+1 + 5672952‘_52;1 + ASz'ZSiZH) 5 (A1)

i

by imaginary time-evolution of iTEBD. Second-order Suzuki-Trotter decomposition is
used and typically we take y = 500-1000. Imaginary time step J7 is reduced from é7 = 0.1
to 0.01 and 0.001 after imaginary time-evolution at coarser d7 converges. At each 7, the
convergence is checked by the difference of energy and entanglement entropy of a half chain
between two successive time steps. We set a criterion of convergence to 1e-8 for energy
and le-6 for entanglement entropy. After the imaginary time-evolution at o7 = 0.001
converges, we compare the energy of the obtained states with the exact ground state
energy of the XXZ chain [11]},

Egsz—é—sm"/ g (1- ) )y A< (A2)
4 v Jo tanh(mwa/p)
A 1 «— 2
By = T sinh p <§ + Z T 1) (A< —1) (A.3)
n=1

where p1 = arccos(—A) and p = arccosh(—A). The energy of the obtained states matches
with the exact value for 5 or 6 digit. Therefore, even if the system is in gapless phase
(=1 < A <1) where entanglement entropy of a half chain diverges in the thermodynamic
limit (this means y — o0), we confirm that the converged states of iITEBD with finite bond
dimension simulate the true ground states well (related discussion is found in Ref. [20]).

1 Chapter 4 in his textbook, Eqn. (4.28) and (4.44). Note that the interval of integral is misprinted
in Eqn (4.44) of his book.
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Figure A.1: Entanglement entropy of a half chain after the quench. Left panel shows
0 = /2, right § = w/10. Smaller |A| results in slower growth of entanglement entropy.
Note that we do not show some data for the clarity of the figure.

Next, using iTEBD again, we perform real time-evolution by the XXZ7 Hamiltonian
without flux

1 1

for the obtained ground states. We take time step dt = 0.01 or 0.02. As the system evolves,
the entanglement entropy of a half chain grows almost linearly in time? (Fig. A.1). This
growth of entanglement entropy increases the truncation error in the iTEBD algorithm
and it severely limits the accessible time scale of our calculations.

In order to check the validity of numerical data of the real time-evolution, three criteria

are used:
(a) accumulated truncation error during the dynamics is smaller than le-4
(b) energy conservation (unitarity of real time-evolution) is fulfilled within le-4

(c) total magnetization L=' > (S7) is zero in machine precision. We take this criterion
because initial states have no magnetization and the time-evolution by Hj preserves
the magnetization.

In addition to these criteria, for some A and 6 we changed the time step dt and the
bond dimension y, and confirmed the exactly same numerical data. An example of y
dependency of the dynamics is shown in Fig. A.2.

2 In finite one-dimensional critical systems, entanglement entropy of a half chain grows linearly in
time after a global quench [58]. By global we mean that the change of parameter happens homogeneously
in space.
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Figure A.2: An example of y dependency of the dynamics. We adopt the data of x = 1000
up to t = 20 (indicated by arrow).

Among these criteria, usually the one from truncation error sets the most strict limit on
the accessible time scale of calculations. In practice, especially for large |§] and A = —0.5
to —1.0, we sometimes loosened this criterion to around le-3. Even for such cases we
confirmed the reliability of data by checking their y dependency or the criteria (b)(c).

A.2 iTEBD algorithm exploiting a symmetry

Considering symmetries of a system in numerical algorithms greatly reduces computa-
tional costs. As an example, let us consider exact diagonalization for a L site spin-1/2
chain. The dimension of the Hilbert space is 2. If Hamiltonian which we want to di-
agonalize preserves total magnetization, or has a global U(1) (abelian) symmetry, it can
be block-diagonalized according to the value of magnetization (quantum number of that
symmetry). The largest size of the block-Hamiltonian (the dimension of the decomposed
Hilbert space) is about ;C /2, which is much smaller than that of the whole Hilbert space
(when L = 20, 22° = 1048576 and 9,C}o = 184756). Thus computational cost of diagonal-
ization is reduced by several magnitudes. This example clearly illustrates the advantages
of exploiting symmetries in numerical algorithms.

In tensor networks, utilizing symmetries of quantum states and Hamiltonian is also
possible [59]. For numerical calculations of this study we exploit a symmetry of the
XX7Z Hamiltonian, conservation of total magnetization, to reduce computational cost®.
In this section we describe how to incorporate that symmetry of the XXZ7 Hamiltonian
into the iTEBD algorithm [60]. First we prove that quantum states that have definite
magnetization can be expressed as MPS explicitly encoding the value of magnetization.
Next we describe (1))TEBD algorithm which respects the conservation of magnetization in
Hamiltonian.

3 The time needed to perform simulations was reduced by 40% in our case.
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0 iy Al R A2 AlL-1] I‘[L]m

Figure A.3: MPS which encodes magnetization. All bonds have quantum numbers and
the arrows indicate the conservation of magnetization at every site.

MPS associated with magnetization

Consider the same system as we discussed in section 3.3. The Hilbert space consists of
L times tensor product of local Hilbert space, H = C? @ C?'® --- @ C? = (Cd) “F For
simplicity, here we consider spin-1/2 chain case (d = 2) only. The (total) magnetization
of the system is defined as

m=> 5. (A.5)

When given state [¢)) has definite magnetization, or being eigenstate of m, we can
construct MPS for |¢) which encodes the magnetization (quantum number). In order to do
this, we must take local basis {|7) } as eigenstates of local magnetization: {|i)} = {|1),[})}-
We associate the local basis with quantum numbers,

M (1) =1/2, M (1)) = =1/2, (A.6)

which is equal to the magnetization of each basis vector. Specifically, when the eigenvalue
of 1) is m, we can construct MPS

d Xi
Z Z F[l i1 )\[1]1—\[2]12 )\[2 . F [L—1])ip—1 )\[L 1]I‘[L]ZL ’Zlig . ZL> : (A?)

a1 oo ap-_20p 1" -1 QL1
i109-ip, ap-rar,_1=1

where all indices oy, are associated with some quantum numbers M (ay) and the tensors

oy
Fg,ll_’ﬂak can have non-zero value only when

M(fi)) = M(on)
M (agy) + M (Jix)) = M () (1<k<L) . (A8)
M (ap—) + M (lir)) = m

Furthermore, all Schmidt vectors |7ih ™) = 3 (iH{o) PRFLT Tl iy - -y become

eigenstates of magnetization, and physical meaning of M («y) is the eigenvalue of magne-
tization for |7'O},c k]). Thus the condition (A.8) can be interpreted as the conservation of
magnetization at site k.

Diagrammatically, the condition (A.8) is represented by drawing all bonds as arrows
(Fig. A.3). The fictious arrow labeled as 0 comes in from left and the fictious arrow

labeled as m comes out to right.

56



Vol. 4, No. 3 043601 2015 8

Appendix A. Technical details on numerical calculations

Proof

When [¢) = ZilmiL Ciyip |91 -+ - i) have definite magnetization m, its wave function
Ciyiy-i, Call be non-zero only if

M(|Z1>)+M(|Z2>)++M(|2L>) =1m. (A.9)

Therefore, 2 x 2871 matrix CV' = (¢;, (5,..4;)) can be block-diagonalized according to
each value my := M(]i1)) by permuting the basis (is---iy) properly. In other words, by
choosing proper 2¢71 x 25-1 permutation matrix* Q!

A 0 0 —my =1/2
Hohl — 1 1
o= (5 4 0) S (r10

where Ay and Ay are 1 x [ 1Cpyp/o—1 and 1 X ;_1Cyyqp /2 matrices. SVD for cll g
obtained from SVDs for A; and A,,

A P 08, Ay P 1,8,Vs,
[1] SVD, U1 0 ) Sl 0 ) ‘/1 0 0 1] —1
=" (0 U2> (0 s, 0V, 0 (") . (A.11)

Note that unitarity of Q' assures that this decomposition for C!l is actually SVD. In
the same way as explained in section 3.3, we define

» U 0 Sy 0 Vi 0 0 -1
Wi _ (Y1 N _ (»1 m (" [
Faq < 0 U2> 11,001 ’ )\al ( O SQ) 1,01 7 valle“'ZL (O V'Q 0) (Q )

X1
Cir (igmin) = Y DALY (A.12)

ay a2t

Qai1,i2-1,

ar1=1

: : 1 iy (. :
From construction, Schmidt vector |7l) = > i 5 14,) becomes an eigenvector of mag-
netization. We can associate index a; with quantum number

M(on) i= M(lin)) (=m —M([iz)) + - - + M(lir))), (A.13)

which is equal to the magnetization of Schmidt vector |7i}).

As a next step, we perform SVD on VBLMS_,_Z-L = )\BJVOE?(Q“_Z.L). From the definition
of VI we know that V[;LMS__I-L can be non-zero only when
M(on) + M(Jia)) + -+ + M(lip)) = m. (A.14)

Again v s block-diagonalized according to mq = M(|ay)) + M (]iz)) by permuting
indices (aqi9) and (i3---ip),

Bl 0 0 O —myg=1

PRVYQE = | 0 B, 0 0] «mp=0, (A.15)
0 0 B3 0 — my = —1

4 when elements of matrix A = (a;;) satisfies a;; = P;;, P € Sy (symmetric group of degree n), A is
called permutation matrix. Permutation matrix is unitary, ATA = 1.
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where P and Q? are 2y; x 2y; and 2572 x 2572 permutation matrices. SVDs for each
matrix B; 2 U,8,V; yield SVD for V1,

i svD . U, 0 0 S; 0 0 Vi 0 0 0 .
VI PE) T o e o) {0 S o]0 Vo0 0] (QF)
0 0 Us 0 0 S; 0O 0 V3 O
Then T and A2 are defined by
. . U, 0 0 S 0 0
rize = () (PP 0 Uy 0 , M =10 S 0 :
0 0 Us A 0 0 S;
112,002 Q2,002
Vi 0 0 0 .
ch],ig-"iL =10 V, 0 0 (Q[Z}) 7
0O 0 V3 O o
Q2,13 1],
a17,2 13 ZL - ZACH 3}22/\52‘/(5]25 ’LL ° (A]‘G)
as=1

Schmidt vector ]Talf ) =D i Al |Tc[y11]) lia) becomes an eigenstate of magnetization,

and new index «ay can be associated with quantum number (magnetization of ]Ta2 ))

Obviously, the condition (A.8) for ' is satisfied.

Repeating this procedure (block-diagonalizing V[k] and performing SVD for each block),
we can construct MPS for [¢) exploiting quantum numbers and satisfying the condi-
tion (A.8).

TEBD, iTEBD algorithm with conservation of magnetization

When Hamiltonian conserves quantum numbers exploited by MPS, the block structure
of {T™}, in MPS (Eqn. (A.8)) is preserved during time-evolution. In that case, TEBD
and iTEBD algorithm respecting the quantum numbers can be constructed. As we will
see later, by exploiting symmetry computational cost of the algorithm is reduced by one
or two magnitude.

Consider Hamiltonian on spin-1/2 chain which can be decomposed as the sum of two-
site operators H= > H 11+1 and each term preserves total magnetization: [, H 1i+1) = 0.
In that case, time-evolution operators used in the (i)TEBD algorithm, such as Vo=
e—omH, +1also preserve magnetization: [m, V] = 0. Hence matrix representation of V=
Do i lel;ll:ll ligi1) (Jijie1| has non-zero components only when

M([i)) + M(lire1)) = M([5) + M([5141))- (A.18)
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As a consequence, if initial MPS satisfies the condition (A.8), the matrix © considered in
(i) TEBD algorithm

O lirar 1), (i1 10ns1) = Z <)\[l i )\[Z]F[l+1]l+1)\[l+1>V'iz'im (A.19)

Q17 010" T a4 Ap+1 J1Ji+1
JUJi41,0

has non-zero elements only when
M(Ji)) + M(eu—1) = M(Ji1)) + M(cup). (A.20)
Then © has block-diagonal structure according to m; := M(|i;)) + M (ay—_1),

O, 0
POQ=|0 © -], (A.21)

where P and @) are some permutation matrices of size 2x;_1 X 2x;-1 and 2x;41 X 2x41-
SVDs for each block ©; = U;S;V; yield SVD for O,

u 0 --- Sy, 0 .- Vi 0 .-
oe=pr |0 U -] . [0 S - |0 Vo --rft (A.22)

New tensors [, Tl-+1], A are obtained by

B u 0 ---
Pl ()\[lfl]) ptlo Uy -
ap-10 Q-1 ) ) ) )
. a1,
B Vi 0 - S, 0
e - () [0% )en) [0S
' ayiip10g ' ' h a0
[ 1 [1]e 1] T [1+1]e 1+1]
@(Hal 1 (7'l+1al+1 Z )\Otl 1] a]lllal)\[oql—‘[ocjozlhl1+l)\[oz;1 <A23)
a;=1
Quantum numbers associated with new indices oy (= 1,---,X;) are
M(oq) == M(li)) + M(cu-1) (= M(Jiz41)) + M(cus1)), (A.24)

which are equal to the magnetization of Schmidt vector |7'o[}l'"l]> = Zilal ) )\gl 11]F[oll]lnlal |Ten_

By definition, the updated tensors T, X satisfy the condition (A.8).

Practical procedure of the algorithm and computational cost

In order to implement the (i))TEBD algorithm exploiting a symmetry into actual com-
puter programs, we have to prepare lists of quantum numbers {M (ay)}x as well as MPS
{T¥ XK1Y, The update of tensors I'l, "I+l is performed as below (we write bond di-
mension as x):
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(1) computing ©; by using the list { M (ax)}x and the condition (A.20). We do not have
to calculate ©.

(2) doing SVD for each ©;. Because the size of matrix ©; is smaller than that of ©, the
cost of SVD is greatly reduced (we will see an example below).

(3) sorting all Schmidt values obtained from the SVDs for ©; (i = 1,2,---). In practice
we merge lists of the singular value from each ©; and sort it. If the number of the
Schmidt values is larger than x in total, we have to truncate Schmidt vectors with
smaller singular values (irrespective of the number 7).

(4) storing the Schmidt vectors and Schmidt values into tensors I' and A properly, by
using the list {M (o)}

Let us discuss how much computational cost of SVD is reduced by exploiting the symmetry
(the conservation of magnetization). SVD for n x n matrix takes O(n?®) time. Therefore
without exploiting the symmetry, cost of SVD is O((2x)3) . On the other hand, when we
consider the symmetry, we have only to perform SVD for the smaller matrix, ©;. Typically
we have experienced that the largest size of matrix ©; (i = 1,2,---) is nearly a quarter of
the size of ©, and therefore we gain 43 = 64 times speed-up by exploiting the symmetry®.
For example, in the case of the ground state for A = —0.5, y = 1000, the number of indices
ar (k € odd sites) that have quantum number M(ay) = [3,2,1,0,—1,—2, -3, —4, —5]
is [8,52,147,241, 261,186, 83, 20, 2|, respectively®. The largest size of ©; in this case is
241 + 261 = 502, much smaller than the size of ©, 2000.

Comment on quantum numbers in iMPS and iTEBD

In iMPS and iTEBD, the physical meaning of quantum numbers for indices aj can be
subtle because magnetization of Schmidt vector can become infinite. However, this sub-
tlety is avoided if we consider the quantum numbers as the difference of magnetization of
Schmidt vectors between initial state and current state [60].

5 We have to do many SVDs for each time step, so actual speed-up of the algorithm is less than 64
times.

6 for k € even sites, the number of indices ay that have M(ay) = [7,5,3,1,—1,-3,-5,—7,—9] is
[2,25,94,198,267,231, 131,45, 7], respectively.
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