情報処理の熱力学

沙川 貴大

東京大学大学院 総合文化研究科

2014年5月8日

概 要

情報理論と熱力学を融合した理論,情報熱力学について入門的な解説を行う.とく に,測定やフィードバックなどの情報処理過程への,熱力学第二法則や非平衡関係式の 一般化について議論する.また,情報熱力学の一つの帰結として,いわゆるマクスウェ ルのデーモンのパラドックスがどう解決されるかも議論する.

1 イントロダクション

情報と熱力学を橋渡しする研究は、いわゆる「マクスウェルのデーモン(Maxwell's demon)」の思考実験にまでさかのぼる [1]. デーモンは熱ゆらぎのレベルで熱力学系を観測して制御することで、熱力学第二法則に反したことができるように見えてしまう. 果たしてデーモンは第二法則を破るのか――19世紀以来多くの議論がなされてきたが、ここ数年で理解が本質的に進展した.本稿で詳しく議論するように、「情報」の概念を近年の非平衡統計力学の成果に取り入れることで、デーモンと第二法則の整合性を完全に理解できることが明らかになった.

また実験的にも,最近になってはじめて,実際にマクスウェルのデーモンが実験で実現さ れた [2]. この背景には,単一高分子や単一コロイド粒子のようなミクロな熱力学系を観測・ 制御する実験技術の進展がある.このようなミクロな系も,周囲に水などのマクロな熱浴が あることにより,熱力学的な振る舞いをする.ミクロ系においては熱ゆらぎの効果がマクロ 系に比べて顕著なので,その「ゆらぎ」についての情報を用いた制御が実験で実現できるの だ.このとき,デーモンとは熱ゆらぎのレベルで測定とフィードバックを行うデバイスであ ると理解できる.

このように,情報と熱力学をつなぐ研究は新しい分野を形成しつつあり,いわば「情報熱 力学」と呼ぶことができる¹.情報熱力学の重要性は,「マクスウェルのデーモンのパラドッ クス」を解決できるという(ある意味で,懐古的な)ことだけではない.パラドックスの解 決は一つのコロラリーに過ぎず,情報熱力学はより豊かな内容を含んでいる.たとえば,測 定やフィードバックなどの情報処理過程に適用できる形に,熱力学第二法則や非平衡統計力 学の関係式が拡張された.その結果として,デーモンが取り出せる仕事量の上限や,測定に 要するエネルギーコストの原理的な下限が,情報量と定量的に結びついていることが明らか になった. かつて伝統的な熱力学が成立したとき、「不可逆性とは何か」という原理的な問題と「どう すれば効率のいい熱機関を作れるか」という実用的な問題が、密接に結びついていた.同様 に、情報熱力学においても、「情報とは何か、それは不可逆性とどう関係するか」という原理 的な問題と「どうすれば低コストで情報処理が可能か」という実用的な問題が、相補的にお 互いを深めながら発展していくことが期待される.

本稿の目的は,情報熱力学のコアとなる考え方を簡潔に議論することである.まず第2節 で,情報と熱力学をつなぐもっとも基本的なモデルであるシラード・エンジンを紹介する. 次に第3節で,情報理論の入門について議論し,どのようにして「情報」という概念を定量 化するかを述べる.次に第4節で,近年の非平衡統計力学の成果である「ゆらぎの定理」を 概観する.第5節では情報消去に関する「ランダウア原理」ついて述べる.次の第6節が本 稿のメインであり,測定とフィードバックの熱力学について詳しく解説する.シラード・エ ンジンが現代的立場からどのように理解できるかについも述べる.第7節では,歴史を振り 返りつつ,「マクスウェルのデーモンのパラドックス」の解決についてまとめる.最後に第8 節で,情報熱力学についての最新の研究の一端を紹介する.なお,本稿では主に古典系の場 合について議論する.

2 シラード・エンジン

我々の出発点はシンプルな思考実験である.マクスウェルのデーモンのモデルのうち,最 も簡単かつ本質的なものとして知られているのが,シラード・エンジン(Szilard engine)と 呼ばれる一粒子熱機関である(図1を参照).まず図1(a)のように,温度Tの熱浴と接触 した箱の中に粒子が一つ入っており,熱平衡状態にある.次に(b)のように,箱の中央に仕 切りを入れる.粒子が十分小さいとすると,この操作に仕事は必要ない.ここで観測者たる 「デーモン」が,粒子がどちらの箱に入っているかを誤差なく測定する.この測定で得られ た情報量は「左」か「右」かの1ビットであり,これは自然対数でh2の情報量である.測 定の後,観測者にとっては,図1(c)のように粒子がどちらの箱に入っているかが完全に分 かる.そこで(d)のように,もし粒子が左に入っていたら右の端まで,もし右に入っていた ら左の端まで,中央の仕切りを等温準静的に移動させる.すなわち,粒子が入っている方の 箱の体積を二倍に膨張させる.理想気体の状態方程式を使うと,この等温準静膨張によって k_BTh2の仕事を取り出せることが分かる(k_Bはボルツマン定数).この操作のあと,エン ジンは最初の熱平衡状態に戻る.

シラード・エンジンにおいて,熱浴は一つしかなく,最初と最後は同じ熱平衡状態である. そのため,これは一見すると「等温サイクルから正の仕事を取り出すことは出来ない(すな わち,第二種永久機関は不可能である)」という熱力学第二法則に反しているように見える. これが「マクスウェルのデーモンのパラドックス」である.シラード・エンジンが熱力学第 二法則に反しないとするならば,それはなぜなのだろうか.

歴史的にみると、この問題を熱力学・統計力学の立場から明確に解決するのは困難であった. シラードがこの思考実験を提唱したのは1929年であり [4],その後ブリルアン(Brillouin) [5], ランダウア(Landauer) [6],ベネット(Bennett) [7] ら多くの物理学者たちがこの問題を議 論してきた². にもかかわらず、これらの議論にはいずれも本質的な問題点があった. 結局,

²このトピックに関する(主に 20 世紀の)歴史的に重要な論文をまとめた論文集として, [8] がある.

図 1: シラード・エンジンの模式図.

パラドックスが完全に解決されたのは21世紀に入ってからであり、そのためには20世紀半 ばに確立した情報理論と、ここ20年で発展した非平衡統計力学の知見が必要であった.

本格的な議論に入る前に,シラード・エンジンについて重要な点を簡単に述べておこう. 第一に,測定の後,測定結果(すなわち,粒子が入っている箱がどちらであるか)に応じて, 仕切りを動かす方向を変えることが重要である.一般に,測定結果に応じて操作の仕方を変 えることはフィードバック制御と呼ばれる³.熱ゆらぎのレベルでフィードバック制御を行 うことが,マクスウェルのデーモンの操作の本質である.第二に,サイクルで取り出された 仕事量 k_BT ln 2 が,(k_BT を比例定数として)測定で得た情報量 ln 2 に比例していることであ る.これは,あとで詳しく議論するように,フィードバックによって情報が仕事に変換され ていることを意味する.このように情報を仕事や自由エネルギーに変換する熱機関は,情報 熱機関と呼ぶことができる.

3 情報理論入門

本節では、二種類の情報量、シャノン情報量(Shannon information、これはしばしばシャ ノンエントロピーとも呼ばれる)と相互情報量(mutual information)を簡単に紹介する⁴. これらはいずれも情報理論の根幹をなす概念である.

まず,離散確率変数 x を考える. x のとりうる値全体の集合を X と書き,その確率分布を p[x] とする ($\sum_{x \in X} p[x] = 1$). このとき, X のシャノンエントロピー (シャノン情報量) は

$$S(X) := -\sum_{x \in X} p[x] \ln p[x] \tag{1}$$

と定義される.これはxの分布がどのくらいランダムかを表している.xのとりうる場合の 数をN (< +∞)とすると、 $0 \le S(X) \le \ln N$ が成立する.ここで $S(X) = \ln N$ となるのは、 任意のxについてp[x] = 1/Nのとき、すなわち分布が完全にランダムな場合である.一方 S(X) = 0となるのは、ある一つのxだけでp[x] = 1となるとき、すなわちランダムネスが 全くない、いわば決定論的な場合である.

³確率的なフィードバック制御の教科書として、たとえば [9] がある.

⁴情報理論の定評ある本格的な教科書として [10] がある.より初学者向きの教科書としては [11] などがあ る.また、シャノンの原論文も明快で、和訳も出版されている [12].

たとえば, xが "0" または "1" の値をとるとする. x = 0 である確率をpとすると, シャノン エントロピーは $S(X) = -p \ln p - (1-p) \ln(1-p)$ となる. p = 1/2のとき最大値 $S(X) = \ln 2$ となり, p = 0および p = 1のとき最小値 S(X) = 0となる.

シャノンエントロピーと熱力学エントロピーは一般には一致しないが、いくつかの特別な場合については一致する. たとえば、xがミクロカノニカル分布に従う変数の場合、 $S(X) = \ln N$ は ($k_{\rm B}$ 倍を除いて)ボルツマンの公式そのものである. また、カノニカル分布の場合も、シャノンエントロピーと熱力学エントロピーが一致することが知られている. さらに、エネルギーの期待値が与えられたとき、シャノンエントロピーを最大にする分布がカノニカル分布であることも知られている.

次に、二つの離散確率変数 $x \in X \ge y \in Y$ がある場合を考える.結合確率分布を p[x, y] と する. $x \ge y$ 単独の分布はそれぞれ $p[x] = \sum_{y \in Y} p[x, y], p[y] = \sum_{x \in X} p[x, y]$ で与えられる. このとき、二つの確率変数の相関を表す概念である相互情報量を

$$I(X:Y) := S(X) + S(Y) - S(XY) = \sum_{x \in X, y \in Y} p[x, y] \ln \frac{p[x, y]}{p[x]p[y]}$$
(2)

と定義する. ここで, $S(X) := -\sum_{x \in X} p[x] \ln p[x]$, $S(Y) := -\sum_{y \in Y} p[y] \ln p[y]$, $S(XY) := -\sum_{x \in X, y \in Y} p[x, y] \ln p[x, y]$ である.

すなわち、二つの確率変数のエントロピーがどのくらい加法的でないかによって、二つの 確率変数がどのくらい相関しているか(すなわち、どのくらい情報を共有しているか)を定 量化するのが、相互情報量である⁵.たとえば*x*が被測定系の状態で*y*が測定結果の場合は、 相互情報量は「測定で実質的にどのくらいの情報量が得られたか」を表していることになる.

一般に,相互情報量は不等式

$$0 \le I(X:Y) \le \min\{S(X), S(Y)\}\tag{3}$$

を満たす. ここで min{S(X), S(Y)} は $S(X) \ge S(Y)$ の小さい方を表す. $I(X : Y) = 0 \ge x$ るのは, $X \ge Y$ が独立の時, すなわち p[x, y] = p[x]p[y] が任意の $x \ge y$ について成り立つと きである. 一方, 二つの変数が完全に相関していて x = y が常に成立すれば, I(X : Y) =S(X) = S(Y) が成り立ち, 相互情報量は最大値をとる.

図 2: (a) 測定の模式図. X が被測定系, Y が測定結果で, 誤差確率が ε である. (b) I(X : Y) のグラフ.

⁵なお,マクロ系のカノニカル分布においては,二つの系の間の相互情報量は両者の接触面積に比例する程度の大きさしかなく,熱力学極限で無視できる.これがマクロ系の熱力学においては熱力学エントロピーが加法的であることの理由である.

たとえば、x も y のそれぞれが "0" または "1" の値をとる場合を考える.x が被測定系の 状態で,y が測定結果だとしよう.このときの誤差確率を ε とする (0 $\le \varepsilon \le 1$).すなわ ち,真の状態が x であるという条件のもとで,間違った測定結果 y \ne x を得る確率が ε で ある (図 2(a) を参照).x = 0,1 の確率がともに 1/2 とすると,x と y の結合確率分布は $p[0,0] = p[1,1] = (1-\varepsilon)/2$, $p[0,1] = p[1,0] = \varepsilon/2$ となる.このとき $S(X) = S(Y) = \ln 2$ で あり, $I(X:Y) = \ln 2 + \varepsilon \ln \varepsilon + (1-\varepsilon) \ln(1-\varepsilon)$ となる.I(X:Y) を ε の関数として図 2(b) に示す. $\varepsilon = 0$ のときは誤差がなく常に x = y なので,相互情報量は最大値 $I(X:Y) = \ln 2$ をとる. $\varepsilon = 1/2$ のとき X と Y は独立で,I(X:Y) = 0 である.また, $\varepsilon = 1$ のときも最大 値 $I(X:Y) = \ln 2$ をとる.実際,常に $x \neq y$ であれば, y から x を正確に知ることができ る⁶.

変数が連続の場合は、p[x]は確率密度を表し、 $x \ge x + dx$ の間の確率はp[x]dxで与えられる.このとき、シャノンエントロピーは $S(X) := -\int dx p[x] \ln p[x]$ 、相互情報量は $I(X : Y) := \int dx dy p[x, y] \ln[p[x, y]/p[x]p[y]]$ と定義される⁷.

以上をまとめると,ある確率変数がどのくらいランダムかを表すのがシャノンエントロ ピーであり,二つの確率変数がどのくらい相関しているかを表すのが相互情報量である.

4 ゆらぎの定理と熱力学第二法則

次に,現代の非平衡統計力学において重要な関係式である「ゆらぎの定理」について述べ, そこから熱力学第二法則が「導かれる」ことを見る⁸.

熱力学系(以下,システムと呼ぶ)が温度 T の熱浴と接触して,時刻 t = 0 から $t = \tau$ まで時間発展をしている状況を考える.さらに(気体の体積などの)外部パラメータを時間変化させて、システムに対して仕事 W をする状況を考える.たとえば、システムのハミルトニアンを時間依存させることで、システムに対して仕事をすることができる.それだけでなく、たとえば周期境界条件のもとで非保存力をかけることによって、平衡から遠く離れた状況にシステムを駆動してもよい.その過程で、システムは熱浴から熱 Q を吸収する(図3を参照).システムのエネルギーの変化を ΔE とすると、熱力学第一法則 $\Delta E = W + Q$ が成立する⁹.

システムのミクロな状態を記述する変数をxとする.システムは熱浴の影響を受けており, 熱浴は熱的にゆらいでいるので,時間発展x(t)は確率的になる(すなわち,確率過程で記述 される). 仕事 W や熱 Q は経路x(t)に依存するので,W や Q も確率変数になる.このよ うな状況の簡単な具体例の一つは,システムが(シラード・エンジンのように)一粒子から なり,その運動がランジュバン方程式で記述されているような場合である¹⁰.また,システ

⁶いつも本当のことを言う人からも、いつも嘘を言う人からも、完全な情報が得られる.本当と嘘を半分ず つ混ぜてくる人からは、まったく情報が得られない.

⁷連続変数の場合,変数変換に対して相互情報量は不変だが,シャノンエントロピーは不変ではない.また シャノンエントロピーは非負とは限らず,(3)の右側の不等式も成り立つとは限らない.

⁸このトピックのレビュー論文として [13] などがある. 重要な原論文としては [14-20] などがある.

⁹W と Q はいずれも、システムと「力学的な外界(おもりなど)」や熱浴との間の「エネルギーの移動量」 として明確に定義される.一部の文献(たとえば [21])では、(熱平衡状態とは限らないときの)エントロピー 変化に k_BT をかけたものを仕事と呼んでいるが、このような定義は熱力学・統計力学的に正当化できない.

¹⁰ランジュバン方程式について物理学の観点から記述している教科書として,たとえば [22] がある(これは 線形応答理論についての非常に優れた教科書でもある).確率解析の立場からの伊藤公式などの解説は,たと

ムと熱浴の全系がハミルトン系であり,熱浴の初期状態がカノニカル分布であるとすれば,システムだけの時間発展は確率的になる¹¹.以下の議論は,このような設定の詳細によらず, 普遍的に成立する¹².

図 3: システムと熱浴の模式図.

時刻 t における x の確率密度を p[x;t] とする¹³. このとき,時刻 t における x の確率的エ ントロピー(stochastic entropy)を $s[x;t] := -\ln p[x;t]$ と定義する. このアンサンブル平均 $\langle s \rangle := \int dx p[x;t] s[x;t]$ はシャノンエントロピーに他ならない. x のある経路 x(t) が与えられ たとき,時刻 0 から τ までの確率的エントロピーの変化を $\Delta s := s[x(\tau);\tau] - s[x(0);0]$ とする. このとき,(システムと熱浴を合わせた)全系における確率的エントロピー生成(stochastic entropy production)を

$$\sigma := \Delta s - \beta Q \tag{4}$$

と定義する.ここで $\beta := (k_{\rm B}T)^{-1}$ は逆温度である.(4)の右辺の第一項 Δs はシステムにおけるエントロピー変化,第二項 $-\beta Q$ は熱浴におけるエントロピー変化と解釈できる.なお,システムの初期分布と終分布がいずれもカノニカル分布のとき,(4)は $\sigma = \beta(W - \Delta F)$ と書ける.ここで ΔF はシステムの自由エネルギーの変化である.

システムの初期分布と終分布は、熱平衡とは限らない任意の分布とする.このとき、

$$\langle e^{-\sigma} \rangle = 1 \tag{5}$$

が成立することが知られている.ここで $\langle \cdots \rangle$ は,あらゆるミクロな経路x(t)についてのアン サンブル平均を表す.(5)は、システムの初期状態・途中の状態・終状態がいずれも平衡から遠 く離れていても、あるいは詳細釣り合い(detailed balance)が成り立っていなくても、常に 成り立つという顕著な性質をもっている¹⁴.(5)は積分型ゆらぎの定理(integral fluctuation theorem)あるいはジャルジンスキー等式(Jarzynski equality)と呼ばれる¹⁵.以下では(5) のことを単にゆらぎの定理と呼ぶ.

さて,指数関数は下に凸なので,凸不等式 (Jensen inequality) $\langle e^{-\sigma} \rangle \ge e^{-\langle \sigma \rangle}$ が成立する. したがって,(5) の直接の帰結として,

$$\langle \sigma \rangle \ge 0$$
 (6)

えば [9] にある.また,ランジュバン方程式によって熱や仕事をどう定義するかについては,[23] で詳しく議 論されている.

¹¹このような設定で議論している論文として [16,18] がある.

¹²異なる温度の熱浴が複数存在する場合への拡張も可能である.

¹³(ランジュバン系などを念頭に置いて)変数は連続とするが,離散の場合でも議論は変わらない.

¹⁴システムと熱浴の全系がハミルトン系とすると、(5)を導くうえで本質的な仮定は、熱浴の初期状態がカノ ニカル分布ということだけである.詳しくは[18]を参照.

¹⁵なお,これよりも強い関係式として,いわゆるゆらぎの定理(fluctuation theorem)や詳細ゆらぎの定理 (detailed fluctuation theorem)も知られている.レビュー [13] などを参照.

が成り立つことが分かる.すなわち,全系のエントロピー生成は,平均すると必ず非負である.これは熱力学第二法則に他ならない.σが確率的に負になることはあるかもしれないが, 平均すると必ず非負になるのだ.σの定義 (4)に立ち戻ると,(6)は

$$\langle \Delta s \rangle \ge \beta \langle Q \rangle \tag{7}$$

とも書ける.

とくに、システムの初期状態と終状態がカノニカル分布の場合は、(7) は平衡熱力学でよく 知られているクラウジウスの不等式 (Clausius inequality) に他ならない¹⁶. この場合は、(6) を $\langle W \rangle \ge \Delta F$ と書くこともできる. とくに $\Delta F = 0$ の場合、この不等式は $-\langle W \rangle \le 0$ と書 け、これは「等温サイクルから正の仕事を取り出すことはできない」ということを意味する. このように、(6) の導出は、熱力学第二法則に統計力学的な「基礎づけ」を与えているとも 言える¹⁷.

さらに,ゆらぎの定理(5)はシステムの初期状態と終状態が任意の非平衡状態でも成立し たので,不等式(6)や(7)もそのような状況で成り立つ.すなわちこれらの不等式は,熱力 学第二法則を任意の非平衡状態間の遷移に拡張したものとも言える.その際,非平衡状態の エントロピーとして,シャノンエントロピーを用いたことになる¹⁸.

なお,(6)や(7)の等号が成立し,平均エントロピー生成がゼロであるとき,そのプロセスは「熱力学的に可逆(thermodynamically reversible)」である¹⁹.たとえば,外部からの操 作が限りなくゆっくりで,システムが常に平衡状態にあるような準静等温過程は,熱力学的 に可逆である.

このように,ゆらぎの定理(5)は熱力学第二法則を含んでおり,それをさらに強く等式の 形で表現したものとみることができる.(5)の左辺の指数関数を展開するとσの高次の項が 出てくるが,このような高次の項をすべて足し合わせることで,一次の平均値に関する不等 式(6)よりも強い等式が成り立つのである.さらに,平衡からのずれが線形の範囲でゆらぎ の定理を展開することで,第一種揺動散逸定理を導くことができる.さらに高次の展開を進 めていくことで,高次のゆらぎと応答の関係や,高次のオンサーガ関係式などを得ることも できる [29,30].このようなことが可能なのは,高次のゆらぎまで全てを含んでいるという ゆらぎの定理の性質によっている.このようにゆらぎの定理は,非平衡統計力学に統一的な 見方を与えてくれるのだ.

なお,マクロな熱力学系においては,σのゆらぎは平均値に比べてきわめて小さく,その 効果を観測することは困難である.しかし,単一高分子のようなミクロ系な熱力学系におい ては,実際にσのゆらぎを観測し,ゆらぎの定理(5)を実験的に検証することができる²⁰.

¹⁶平衡熱力学における第二法則は、平衡状態間の遷移だけに関するものであったことに注意.

¹⁷ただし,「ミクロな(量子)力学は可逆なのに,マクロな熱力学が不可逆なのはなぜか?」という問いに,こ こでの「導出」が完全な答えを与えているとは言い難い.というのも,熱浴の初期条件をカノニカル分布にと ることがこの導出において重要であり,このような特殊な初期条件の選び方が時間反転対称性を破っているか らだ.「不可逆性の起源」という(何をもって答えとしていいかも分からないような)難問の理解には,まだ遠 い状況と言える.この問題に対する一つの有望なアプローチとして,孤立量子系の緩和の研究(たとえば[24] など)が,近年注目を集めている.

¹⁸ただし,たとえば非平衡定常状態間の遷移においては,(6)は等号を達成できない「ゆるい」不等式になっている.そのような場合に等号達成が可能な不等式の探究は,非平衡定常系の熱力学の課題である[19].

¹⁹より詳しくは [25,26] を参照. また, 厳密な熱力学の理論体系における「可逆性」の概念は, [27,28] で論じられている.

²⁰実際の実験の論文としては,たとえば [31,32] などがある.

5 ランダウア原理

さて、前節で導いた一般化第二法則 (7) の簡単な応用として、ランダウア原理(Landauer principle)を紹介する. 1ビットの情報を蓄えることができる「メモリ」を考える. これはいわば「デーモンの頭の中」にあり、測定結果を記録しておくものである. 物理的には図4のように、二重井戸ポテンシャルでメモリをモデル化することができる. 図4(a) のように左右対称なメモリだけでなく、(b) のように非対称なメモリも考えることができる²¹. ポテンシャルの中央のバリアが熱ゆらぎに対して十分に高いと仮定すると、長い時間にわたって、一方の井戸にある粒子が他方の井戸に移動する確率は非常に小さい. そのため、粒子がどちらの井戸に入っているかによって、情報を記録・保持しておくことができる. たとえば、左側の井戸に粒子があるときに"0"、右側にあるときに"1"の情報を記録しているとする. これに対応する変数を $k \in \{0,1\}$ とする. このとき、メモリ全体の相空間(この変数を y とする)が k = 0 と k = 1 に対応する二つの部分空間に分かれていることになる.

図 4: メモリの模式図. (a) 対称メモリの場合. (b) 非対称メモリの場合.

最初, k = 0の確率が p_0 ($0 < p_0 < 1$), k = 1の確率が $p_1 := 1 - p_0$ とする. これに対応 するシャノンエントロピー(以下,これはシャノン情報量と呼ぶ)は $H := -\sum_{k=0,1} p_k \ln p_k$ である.次に,メモリ全体のシャノンエントロピーを考えよう.yの確率分布を p[y]とする. また,ある k の条件のもとでの y の確率分布を p[y|k]とする(これは k に対応する部分空間 だけでノンゼロの値をもつ).このとき, $p[y] = \sum_{k=0,1} p[y|k]p_k$ が成り立つ.このときのメ モリ全体のシャノンエントロピーを $S := -\int dyp[y] \ln p[y]$ とする.また,kという条件のも とでのシャノンエントロピーを $S_k := -\int dyp[y|k] \ln p[y|k]$ としよう.このとき,シャノンエ ントロピーの一般的な性質により,

$$S = H + \sum_{k=0,1} p_k S_k \tag{8}$$

が成立する.すなわちメモリ全体のシャノンエントロピーは,記録されている情報に対応する*k*のシャノン情報量と,それぞれの井戸の中での*y*のゆらぎに対応するシャノンエントロ ピーの平均の,二つの項に分解できる.ここで我々が通常「情報量」と呼ぶのは前者の*H*だ けである²².

さて,メモリに蓄えられた情報を消去するプロセスを考えよう.情報を消去すると,*k*は 確率1で「標準状態」(すなわち,何らかのあらかじめ決められた状態)になり,消去前の

²¹実際のコンピュータのメモリのポテンシャルは,著しく非対称なことが多い.

²²たとえば,「ハードディスクに1ギガバイトの情報が蓄えられている」というとき,ハードディスク内部の 熱ゆらぎのシャノンエントロピーはその1ギガバイトに含まれていない.

状態に依存しなくなる.標準状態をk = 0とすると,消去後の状態は確率1でk = 0であり, このときのkのシャノン情報量は0になる.すなわち,消去される「情報」とは、シャノン 情報量のことである.消去後のk = 0の井戸の中でのyのシャノンエントロピーを S'_0 とする と、消去後のメモリ全体のシャノンエントロピーS'は S'_0 に等しい.以上により、消去の前 後での全シャノンエントロピーの変化は、 $\Delta S := S' - S = -H + S'_0 - \sum_{k=0,1} p_k S_k$ となる. 情報消去が温度Tの熱浴中で行われるとすると、第二法則(7)より

$$-\langle Q \rangle \ge k_{\rm B} T \left[H + \sum_{k=0,1} p_k S_k - S_0' \right] \tag{9}$$

が成り立つ.これは情報消去の際に発生する熱量の下限を与えている.右辺は,消去された シャノン情報量 H と,メモリの各井戸の内部ゆらぎの変化の平均 $S'_0 - \sum_{k=0,1} p_k S_k$ で決まる. 特別な場合として,図4(a)のような左右対称のポテンシャルを考えよう.消去の前後で粒 子はそれぞれの井戸の中で局所平衡であるとすると, $S_0 = S_1 = S'_0$ が成り立つ.したがって 全シャノンエントロピーの変化は $\Delta S = -H$ であり,(9)は

$$-\langle Q \rangle \ge k_{\rm B} T H \tag{10}$$

となる.すなわち,対称メモリでシャノン情報量 H を消去すると,少なくとも k_BTH の熱 が熱浴に放出される.これがランダウア原理である²³.より一般的な不等式 (9) は,メモリ の非対称性に起因する補正項をランダウア原理 (10) に加えた,一般化ランダウア原理である と言える²⁴.なお,(9) や (10) の等号は,消去が準静的に行われるときに達成され,その場 合の情報消去は熱力学的に可逆である.

情報消去においては,"0"と"1"の両方が"0"に写像され,その逆写像はない(そのこと によって,情報が「消去」されたと言える).このように逆写像がない情報処理は,「論理的 に不可逆(logically irreversible)」であると言われる.これに関して,しばしば「情報消去 は論理的に不可逆なので,熱力学的にも不可逆である」という議論がなされるが²⁵,これは 誤りである²⁶.一般に,論理的可逆性と熱力学的可逆性は無関係である²⁷.論理的に不可逆 とはメモリのシャノン情報量 H が減少することであるが,熱力学的に不可逆とは(熱浴も 含めた)全系の平均エントロピー生成が正であることなので,両者はまったく別の概念なの だ.もちろん,メモリが対称かどうかと,情報消去が熱力学的に可逆かどうかも,関係がな い.情報消去は,有限速度で実行すると熱力学的に不可逆であるが,準静過程で実行すると 熱力学的に可逆である.実際,準静的に情報を消去すると(9)や(10)の等号を達成すること

²⁷より詳しい議論は,たとえば [25] を参照.

²³これは最初, [6] において直感的に述べられた.その後,統計力学的な導出が [33] などでなされた.最近は 実験的な検証も行われている [34].

²⁴ちなみに(言葉の問題に過ぎないが),(7)の左辺がシャノンエントロピーの変化だからといって,(7)そのものを「ランダウア原理」と呼ぶことは妥当ではないであろう.というのも,ランダウア原理は本来,メモリに記録された情報量 H と発熱量 – 〈Q〉の関係についてのものだからだ.

²⁵ベネットの論文 [7] において明示的にこのような主張がなされた.それから最近に至るまで,いくつもの 文献でこのような主張がなされている.

²⁶このような誤りは,(10)の帰結である「正の発熱がある」ということと,「熱力学的に不可逆である」ということを,混同したことに端を発していると考えられる.もちろん,伝統的な熱力学においても,熱が出るかどうかと可逆かどうかの間に対応はない.たとえば,気体の等温準静圧縮は可逆であるが,正の熱が熱浴に放出される.なお,「情報を消去すると必ず正の発熱がある」という主張も,非対称メモリの場合については一般には正しくない.実際,非対称メモリの場合は(9)の右辺が負になりうる.

ができる²⁸. (9) や (10) の等号を達成するということは, (6) の等号を達成することと等価で ある. そのような場合は, 全系の平均エントロピー生成がゼロで, 情報消去は熱力学的に可 逆である.

6 測定とフィードバックの熱力学

次に,デーモンが熱力学系に対して測定とフィードバックをしている状況(図5を参照) を,第4節の非平衡統計力学の枠組みを使って分析しよう²⁹.この状況では相互情報量が重 要な役割を果たす.

被測定系(以下,これをエンジンXと呼ぶ)の初期状態をx,デーモンのメモリYの初期状態をyとする³⁰.エンジンとメモリはそれぞれ別の熱浴に接触しており,二つの熱浴の間に直接の熱のやり取りはないとする.簡単のために,両方の熱浴の逆温度はいずれも β とする(一般化は容易である).また,エンジンとメモリの間にも,直接エネルギーのやり取りはないとする.いわば,エンジンとメモリが情報だけをやり取りする状況を考える.

図 5: 測定とフィードバックの模式図. (a) 一般的な設定.まず測定のとき,エンジンの被測 定状態xの影響を受けながら,メモリの状態がyからy'まで変化する.この間はxは変化し ないとする.測定後の $x \ge y'$ の相関が,メモリが測定で得た情報に対応する.次にフィード バックによって,メモリの測定結果y'の影響を受けながら,エンジンの状態がxからx'ま で変化する.この間はyは変化しないとする.(b)シラード・エンジンの場合.

まず測定のプロセスを考える.測定過程を考えているので, $x \ge y$ の初期相関はゼロ(すなわち,初期時刻での相互情報量はゼロ)とする.そのときの確率分布を $p_0[x,y]$ (= $p_0[x]p_0[y]$)とする.メモリの状態は,エンジンの状態の影響を受けながら,yからy'まで時間発展する.その間,エンジンの状態はxのままで時間発展しないとする.yからy'への時間発展はその遷移確率によって特徴づけることができ,それはxという条件のもとでp[y'|y,x]と書ける.このと

²⁸このようなモデルを具体的に作ることもできる. [25] などを参照.

²⁹本節の内容をもっとも包括的に議論している論文は [35] である. 関連する文献として [36–39] などがある. ³⁰なお,前節での議論のようにメモリの内部構造(*k* でラベルされた部分空間に分かれていること)を考え ることができる. しかし本節では簡単のために,内部構造は明示的には考えないことにする.

き,測定後の確率分布は $p_1[x, y'] = \int dy p[y'|y, x] p_0[x, y]$ となる. ここで $p_1[x] = \int dy' p_1[x, y']$, $p_1[y'] = \int dx p_1[x, y']$ とすると, x は時間発展していないので $p_0[x] = p_1[x]$ である. また測定 後の相互情報量は $I := \int dx dy p_1[x, y'] \ln[p_1[x, y']/p_1[x] p_1[y']]$ であり,これは測定でメモリが 得た情報量を表している. ここで,確率的相互情報量を $i := \ln[p_1[x, y']/p_1[x] p_1[y']]$ と定義す る. このアンサンブル平均は相互情報量になる: $I = \langle i \rangle$.

この測定過程において、エンジン、メモリ、熱浴からなる全系の確率的エントロピー生成 は $\sigma_{\text{meas}} = \Delta s_{\text{meas}} - \beta Q_Y$ と書ける.ここで Δs_{meas} は測定過程での全系の確率的シャノンエントロピーの変化、 Q_Y はメモリが吸収した熱量である(なお、エンジンは時間発展していないので、熱の吸収もない).ここでxが時間発展をしないことを使うと、 $\Delta s_{\text{meas}} = \Delta s_Y - i$ が成立することが分かる.ここで Δs_Y はメモリの確率的エントロピー生成の変化である.以上より $\sigma_{\text{meas}} = \Delta s_Y - i$ が成り立つ.したがって(6)は

$$\langle \Delta s_Y \rangle - \beta \langle Q_Y \rangle \ge I \tag{11}$$

と書くことができる.これが、測定過程における熱力学第二法則の一般形である.

(11)を用いると,測定に要するエネルギーコストの下限を明らかにすることができる.測 定過程でのメモリのエネルギー変化を Δ*E_Y* と書き,メモリにする仕事を *W_Y* とする.また, 測定前と測定後の状態においては,メモリとエンジンの相互作用エネルギーは無視できると しよう.このとき,(11)は

$$\langle W_Y \rangle \ge \Delta F_Y + k_{\rm B} T I$$
 (12)

と書ける. ここでメモリの有効自由エネルギーの変化を $\Delta F_Y := \langle \Delta E_Y \rangle - \beta^{-1} \langle \Delta s_Y \rangle$ とおいた. (12) は測定に要する仕事の原理的な下限を表している. 有効自由エネルギーの変化が同 じなら,より多くの情報 *I* を得るにはより多くの仕事が必要であることが分かる. 特別な場 合として,図 4(a) のような対称メモリを用いて誤差のない測定を行うと,(12) の右辺は 0 に なる.

次にフィードバックのプロセスを考えよう.この場合は、メモリの状態は y' から変化せずに、 エンジンの状態は x から x' へと変化する.フィードバック制御においては、このエンジンの時 間発展が測定結果 y' に依存する.x から x' への遷移確率は、y' という条件のもとで p[x'|x,y']と書けることになる.フィードバック後の確率分布は $p_2[x',y'] = \int dx p[x'|x,y'] p_1[x,y']$ とな る.ここで $p_2[x'] = \int dy' p_2[x',y'], p_2[y'] = \int dx' p_2[x',y']$ とすると、y' は時間発展してい ないので $p_1[y'] = p_2[y']$ となる.またフィードバック後の状態の確率的相互情報量を i' := $\ln[p_2[x',y']/p_2[x']p_2[y']],$ 相互情報量を I' := $\langle i' \rangle$ と書く.フィードバックによって相互情報量 は減少するので、I > I'が成り立つ.

フィードバック過程での全系の確率的エントロピー生成は $\sigma_{\rm fb} = \Delta s_{\rm fb} - \beta Q_X$ と書ける.こ こで $\Delta s_{\rm fb}$ は測定過程での全系の確率的シャノンエントロピーの変化, Q_X はエンジンが吸収 した熱量である.ここで y' が時間発展をしないことを使うと、 $\Delta s_{\rm fb} = \Delta s_X + (i - i')$ が成立 することが分かる.ここで Δs_X はエンジンの確率的エントロピー生成の変化である.以上 より $\sigma_{\rm fb} = \Delta s_X - \beta Q_X + (i - i')$ が成り立つ.したがって(6)は

$$\langle \Delta s_X \rangle - \beta \langle Q_X \rangle \ge -(I - I') \tag{13}$$

となる.これがフィードバックのある場合の熱力学第二法則の一般形である.エンジンとメモリの相互作用がなければ $\langle \Delta s_X \rangle = \beta \langle Q_X \rangle$ は常に非負であるが,フィードバックの影響で-(I - I')まで小さくなれることが分かる.

次に、フィードバックによってエンジンから取り出せる仕事量の上限を考える. エンジンの 初期状態が熱平衡状態であり、 $p_0[x]$ が初期ハミルトニアン E_X に対応するカノニカル分布であ るとする. フィードバック後のハミルトニアンは一般にy'に依存しうる. それを $E'_X(y')$ と書い て、対応する自由エネルギーを $F'_X(y')$ と書く³¹. 自由エネルギーの変化 $\Delta F_X := F'_X(y') - F_X$ のアンサンブル平均を $\langle \Delta F_X \rangle$ と書く. また、フィードバックの間にエンジンに対してする 仕事を W_X とする. さらに、測定前と測定後の状態においては、メモリとエンジンの相互作 用エネルギーは無視できるとしよう. このとき、 $\beta \langle W_X - \Delta F_X \rangle \ge \langle \Delta s_X \rangle - \beta \langle Q_X \rangle - I'$ が成 り立つことを示せる. したがって、(13)より $\langle W_X - \Delta F_X \rangle \ge -I$ が成り立つ. エンジンから 取り出せる仕事を $W_X^{\text{ext}} := -W_X$ とすると、

$$\langle W_X^{\text{ext}} \rangle \le -\langle \Delta F_X \rangle + k_{\text{B}} T I$$
 (14)

が成り立つことになる.すなわち,フィードバックがあるときに取り出せる仕事量の上限は, 自由エネルギー変化よりも大きくでき,その上限は測定で得られた相互情報量で決まる.(14) は,仕事や自由エネルギーと相互情報量を対等に扱う形に一般化された熱力学第二法則であ る.デーモンによって余分に取り出せる仕事のリソースは相互情報量であり,相互情報量を 仕事や自由エネルギーに変換していると言える.この変換効率は次のように定義することが できる:

$$\eta_{\rm fb} := \frac{\langle W_X^{\rm ext} + \Delta F_X \rangle}{k_{\rm B} T I} \le 1.$$
(15)

なお,シラード・エンジンにおいては $\langle W_X^{\text{ext}} \rangle = k_{\text{B}}T \ln 2$, $\langle \Delta F_X \rangle = 0$, $I = \ln 2$ なので, (14) の等号が達成されている.したがって,シラード・エンジンは効率 100 %の情報熱機関 であると言える³². (14) の等号を達成するためには,フィードバックが準静的であることに 加え,得た情報をある意味で「無駄なく使う」ことが必要である³³.

図 6: (a) シラード・エンジンのエントロピー収支. 測定の際に相互情報量 ln 2 が作られ, フィードバックの際にこの相互情報量が $k_{\rm B}T\ln 2$ の仕事に変換される. (b) 通常の等温準静 膨張のエントロピー収支. エンジンのシャノンエントロピーが ln 2 だけ増えたということ は,自由エネルギーが $k_{\rm B}T\ln 2$ だけ減少したということを意味する. この自由エネルギーが $k_{\rm B}T\ln 2$ の仕事に変換されている.

以上の議論の本質を,シラード・エンジンの場合で見てみよう(図6(a)を参照).まず, エンジンにはln2のシャノンエントロピーがあり,メモリのシャノンエントロピーはゼロで

³¹なお,フィードバック後のエンジンの状態はカノニカル分布とは限らないとする.このときの $F'_X(y')$ は, ハミルトニアン $E'_X(y')$ から分配関数を通して定義される平衡自由エネルギーである.

 ³²他にも、(14) の等号を達成する色々なモデルが知られている.たとえば [40-44] など.
 ³³詳しくは [3,41] などを参照.

ある³⁴.次に測定によって ln 2の相互情報量が作られ,メモリのシャノンエントロピーは ln 2 になる.エンジンのシャノンエントロピーに変化はない.次にフィードバックによって相互 情報量がゼロになる.フィードバック後の状態においてエンジンのシャノンエントロピーは (仕切りはないものの) ln 2のままで,メモリのシャノンエントロピーも ln 2のままである. すなわち,フィードバックで相互情報量 ln 2 が減少し,それに対応して *k*_BT ln 2 の仕事が取 り出された.したがって,相互情報量が仕事に 100 %変換されたことが分かる.

比較のために,図6(b)に通常の等温準静膨張を示した.この場合はシャノンエントロピー が増えた分,すなわち自由エネルギーが減った分だけ,仕事を取り出すことができる.この 場合の仕事のリソースは,自由エネルギーである.

7 「デーモンのパラドックス」をめぐって

ここで、「マクスウェルのデーモンのパラドックス」について改めて考えてみよう.そもそ もの問題は、「デーモンは熱力学第二法則に矛盾しないか、矛盾しないとしたらそれは何故 か」というものである.

前節の議論から,結論は明快である.測定とフィードバックのそれぞれのプロセスで,全系のエントロピー生成の平均は常に非負である.すなわち,マクスウェルのデーモンと熱力 学第二法則の間には,何の矛盾もない.一見するとデーモンが第二法則に反するように見えたのは,エントロピー生成のうち相互情報量の寄与を考慮していなかったからに他ならない.

歴史的には、シラードがすでに、メモリの自由度を考えることの重要性を認識していた [4]. その後ブリルアンが「測定のプロセスで余分なエントロピー生成があり、これがデーモンと 第二法則を整合させる」という主張をした [5]. しかしこれは特殊な測定モデルに基づいた 主張であった.一般には、エントロピー生成がゼロの(すなわち、熱力学的に可逆な)測定 をすることは可能である.

そこでベネットが、ランダウア原理に基づき「情報の消去は論理的に不可逆なので、熱力 学的にも不可逆であり、それがデーモンと第二法則を整合させる」と主張した [7]. しかし第 5節でみたように、この主張は誤りである³⁵. 実際には、(対称メモリの場合であっても)情 報消去は熱力学的に可逆にできる. したがって、1980 年代から広く受け入れられてきた「情 報の消去を考えることで初めて、デーモンと第二法則の整合性を理解できる」という主張は 妥当ではない. デーモンと第二法則の整合性を理解するために情報消去を考える必要は、そ もそもないのだ³⁶. 第6節で議論したように相互情報量をきちんと考慮に入れれば、測定と フィードバックのプロセスそれぞれで、デーモンと第二法則が整合していることは明らかで ある.

これは「分かってしまえばほとんどトリビアル」とさえ言える.しかし,この「分かって しまえば」に至るまでに,人類は80年以上を要したことになる.そのためには,エントロ ピー生成の概念の明確化と,そこに相互情報量を含めることの認識が必要であった.

³⁴簡単のために,エンジンやメモリの内部ゆらぎに対応するシャノンエントロピー(第5節での *S_k* に相当 するもの)はプロセスの前後で変化せず,無視できるとする.

³⁵これは,熱力学的可逆性の概念に関する混乱に基づいていたと考えられる.

³⁶「エンジンとメモリの全系を初期状態に戻し,全体をサイクルとするためには,メモリから情報の消去が必要だ」という議論は正しい.しかし,そもそも熱力学第二法則はサイクル以外にも適用できる.したがって,「サイクルにしないとデーモンと第二法則の整合性が理解できない」ということはない.

8 最近の展開

このようにして、デーモンと第二法則の整合性は完全に理解できたわけであるが、これで 情報熱力学の研究が終わったというわけではない.むしろ逆で、これを出発点にして、多様 な情報処理を含む非平衡ダイナミクスを、現代的観点から研究する途が拓かれたと言える. 本節では、そのような最近の展開の一端を紹介する.

まず関連する実験について述べる.定量的なマクスウェルのデーモンの実験は,2010年に はじめて実現された [2].その実験では,螺旋階段状のポテンシャルを作り,単一コロイド粒 子をフィードバックによって登らせることに成功した.そのときの情報から仕事・自由エネ ルギーへの変換効率 (15) は,約 30 %であった.また最近になって,単一電子による実験で もデーモンが実現されている [45,46].それはオリジナルのシラード・エンジンにより近い ものであり,変換効率は 70 %以上を達成している.またこれらの実験において,フィード バックがある状況でのゆらぎの定理が検証されている.

理論的には,情報熱力学をさらに発展させ,それを応用する試みがなされている.その一 つの方向性は,「自律的な情報熱機関」の分析である.たとえば,エンジンとメモリがお互い に相互作用しながら全体として自律的に動くような状況が,高分子ナノマシンや単一電子デ バイスなどによって実現されているとしよう [47].このような場合は,測定とフィードバッ クのタイミングをきれいに分離することができない.測定とフィードバックのタイミングが 完全に分かれていることを前提にした第6節の議論は,自律的な状況には適用できないので ある.そのため,自律的な情報熱機関における情報の役割を理解することをめざした研究が 行われている [48–50].

図 7: ネットワーク上の情報流の模式図.

理論的に興味深いもう一つの方向性は、たくさんの系が複雑に相互作用し、測定やフィー ドバックに限らない複雑な情報の流れがあるときに、情報熱力学をどう拡張するかというこ とである.このような状況は、ベイジアン・ネットワークという概念で定式化できる(図7 を参照).最近、そのようなネットワーク上での情報流と非平衡ダイナミクスを統一的に扱 う形に、ゆらぎの定理や第二法則が拡張された [51].そこでは、移動エントロピー(transfer entropy)と呼ばれる、情報の流れを表す概念が重要な役割を果たす³⁷.そのようにして得ら れた第二法則の拡張は、通常の第二法則よりも不等式として真に強いものであることが示さ れている.

さらに、上記の理論はいずれも、生命現象の解析に応用できる可能性を秘めている.実際、 ネットワーク上の情報熱力学を、大腸菌の走化性のシグナル伝達に応用する試みがなされて ³⁷これは [52] で導入され、時系列解析などでも広く用いられている概念である. いる. その結果として,大腸菌内での情報流と,ノイズに対する走化性の頑健性の間の,定 量的な関係が明らかになった [53].

また,本稿では古典系の場合のみを議論したが,量子系への拡張も可能である [54–58].その場合は量子情報理論と熱力学の接点が重要になる³⁸.たとえばエンタングルメント(entanglement)や量子ディスコード(quantum discord) [60] などの量子的な相関は,熱力学第二 法則と密接な関係をもっていることが明らかになりつつある [61,62].

このように,情報熱力学は,複数の分野を横断する豊かな研究分野を形成しつつある.今後のさらなる展開に期待したい.

参考文献

- [1] J. C. Maxwell, "Theory of Heat" (Appleton, London, 1871).
- [2] S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, and M. Sano, Nature Physics 6, 988 (2010).
- [3] T. Sagawa and M Ueda, arXiv:1111.5769 (2011). これは次の本の一章として出版されている: R. Klages,
 W. Just, and C. Jarzynski (Eds.), "Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond" (Wiley-VCH, 2012).
- [4] L. Szilard, Z. Phys. **53**, 840 (1929).
- [5] L. Brillouin, J. Appl. Phys. **22**, 334 (1951).
- [6] R. Landauer, IBM J. Res. Dev. 5, 183 (1961).
- [7] C. H. Bennett, Int. J. Theor. Phys. 21, 905 (1982).
- [8] H. S. Leff and A. F. Rex (eds.), "Maxwell's demon 2: Entropy, Classical and Quantum Information, Computing" (Princeton University Press, 2003).
- [9] 大住晃,『確率システム入門』(朝倉書店, 2002).
- [10] T. M. Cover and J. A. Thomas, "*Elements of Information Theory*" (Wiley-Interscience, 2nd edition, 2006). 和訳:『情報理論一基礎と広がり一』(共立出版, 2012).
- [11] 佐藤洋,『情報理論』(裳華房,改訂版, 1983).
- [12] C. Shannon, Bell System Technical Journal 27, 379-423, 623-656 (1948); 和訳:クロード・シャノン, 『通信の数学的理論』(ちくま学芸文庫, 2009).
- [13] U. Seifert, Rep. Prog. Phys. **75**, 126001 (2012).
- [14] D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev. Lett. 71, 2401 (1993).
- [15] G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74, 2694 (1995).
- [16] C. Jarzynski, Phys. Rev. Lett. **78**, 2690 (1997).
- [17] G. E. Crooks, Phys. Rev. E **60**, 2721 (1999).
- [18] C. Jarzynski, J. Stat. Phys. 98, 77 (2000).
- [19] T. Hatano and S.-I. Sasa, Phys. Rev. Lett. 86, 3463 (2001).
- [20] U. Seifert, Phys. Rev. Lett. **95**, 040602 (2005).
- [21] J. Oppenheim, M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. Lett. 89, 180402 (2001).
- [22] 戸田盛和,斎藤信彦,久保亮五,橋爪 夏樹,『統計物理学 (現代物理学の基礎 第5巻)』(岩波書店,新装版,2011).
- [23] K. Sekimoto, "Stochastic Energetics" (Springer, 2010); 関本謙,『ゆらぎのエネルギー論』(岩波書店, 2004).

³⁸量子情報・量子計算の定評ある教科書として,たとえば [59] がある.

- [24] S. Goldstein, T. Hara, and H. Tasaki, arXiv:1303.6393 (2013).
- [25] T. Sagawa, J. Stat. Mech. P03025 (2014).
- [26] H. B. Callen, "Thermodynamics and an Introduction to Thermostatistics" (John Wiley and Sons, 2nd edition, 1985); 和訳:キャレン,『熱力学および統計物理入門』(吉岡書店, 第2版, 1998).
- [27] 田崎晴明,『熱力学一現代的な視点から』(培風館, 2000).
- [28] 清水明,『熱力学の基礎』(東京大学出版会, 2007).
- [29] D. Andrieux and P. Gaspard, J. Stat. Mech. P02006 (2007).
- [30] K. Saito and Y. Utsumi, Phys. Rev. B 78, 115429 (2008).
- [31] J. Liphardt *et al.*, Science **296**, 1832 (2002).
- [32] D. Collin *et al.*, Nature **437**, 231 (2005).
- [33] K. Shizume, Phys. Rev. E 52, 3495 (1995).
- [34] A. Bérut *et al.*, Nature **483**, 187 (2012).
- [35] T. Sagawa and M. Ueda, New J. Phys. 15, 125012 (2013).
- [36] T. Sagawa and M. Ueda, Phys. Rev. Lett. **104**, 090602 (2010).
- [37] J. M. Horowitz and S. Vaikuntanathan, Phys. Rev. E 82, 061120 (2010).
- [38] T. Sagawa and M. Ueda, Phys. Rev. Lett. **109**, 180602 (2012).
- [39] H. Tasaki, arXiv:1308.3776 (2013).
- [40] K. Jacobs, Phys. Rev. A 80, 012322 (2009).
- [41] J. M. Horowitz and J. M. R. Parrondo, Europhys. Lett. 95, 10005 (2011).
- [42] D. Abreu and U. Seifert, Europhys. Lett. **94**, 10001 (2011).
- [43] J. M. Horowitz and J. M. R. Parrondo, New J. Phys. 13, 123019 (2011).
- [44] J. M. Horowitz, T. Sagawa, and J. M. R. Parrondo, Phys. Rev. Lett. 111, 010602 (2013).
- [45] J. V. Koski, V. F. Maisi, J. P. Pekola, and D. V. Averin, arXiv:1402.5907 (2014).
- [46] J. V. Koski, V. F. Maisi, T. Sagawa, and J. P. Pekola, arXiv:1405.1272 (2014).
- [47] P. Strasberg, G. Schaller, T. Brandes, and M. Esposito, Phys. Rev. Lett. 110, 040601 (2013).
- [48] D. Hartich, A. C. Barato, and U. Seifert, arXiv:1402.0419 (2014).
- [49] J. M. Horowitz and M. Esposito, arXiv:1402.3276 (2014).
- [50] N. Shiraishi and T. Sagawa, arXiv:1403.4018 (2014).
- [51] S. Ito and T. Sagawa, Phys. Rev. Lett. 111, 180603 (2013).
- [52] T. Schreiber, Phys. Rev. Lett. 85, 461 (2000).
- [53] S. Ito and T. Sagawa, in preparation.
- [54] T. Sagawa and M. Ueda, Phys. Rev. Lett. **100**, 080403 (2008).
- [55] T. Sagawa and M. Ueda, Phys. Rev. Lett. **102**, 250602 (2009); **106**, 189901(E) (2011).
- [56] Y. Morikuni and H. Tasaki, J. Stat. Phys. 143, 1 (2011).
- [57] K. Funo, Y. Watanabe, and M. Ueda, Phys. Rev. E 88, 052121 (2013).
- [58] S. W. Kim, T. Sagawa, S. De Liberato, and M. Ueda, Phys. Rev. Lett. 106, 070401 (2011).
- [59] M. A. Nielsen and I. L. Chuang, "Quantum Computation and Quantum Information" (Cambridge University Press, 2000); 和訳:『量子コンピュータと量子通信』(オーム社, 2004).
- [60] H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2001).
- [61] K. Funo, Y. Watanabe, and M. Ueda, Phys. Rev. A 88, 052319 (2013).
- [62] J. J. Park, K.-H. Kim, T. Sagawa, and S. W. Kim, Phys. Rev. Lett. 111, 230402 (2013).