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1 Introduction

1.1 Flow Chart of Contents

In this paper, we will introduce a canonical operator formalism for quantum systems in far-from-equili-
brium state, named Non-Equilibrium Thermo Field Dynamics (NETFD) [1, 2, 3, 4, 5, 6, 7, 8, 9], which
provides us with a unified framework composed of the dissipative Schrédinger equation, the dissipative
Heisenberg equation (quantum master equation), the quantum stochastic Liouville equation and the
stochastic Heisenberg equation (quantum Langevin equation) (see Fig. 1). NETFD treats dissipative
quantum open systems by the method similar to the usual quantum mechanics and quantum field theory
which accommodate the concept of the dual structure in the interpretation of nature, i.e. in terms of
the operator algebra and the representation space. The representation space of NETFD (named thermal
space) is composed of the direct product of two Hilbert spaces, the one for non-tilde fields and the other
for tilde fields.! Tt was revealed that dissipation is taken into account by a rotation in whole the two
Hilbert spaces. The terms with the product of tilde and non-tilde fields in the infinitesimal time-evolution
generator (we will call it hat-Hamiltonian) take care of dissipative (i.e. irreversible) time-evolution. This
notion was discovered first when NETFD was constructed [1, 2].2 Throughout this paper, we confine
ourselves to the case of boson fields, for simplicity. The extension to the case of fermion fields are rather
straightforward [8].

In sub-section 1.2, we will explain the functioning of random force operator within quantum mechan-
ics if one requires a canonical operator formalism to be satisfied even for quantum dissipative systems

*The text prepared for the intensive seminar at the 57th Summer School for Younger Physicists in Condensed Matter
Physics in 2012.

1 Within NETFD, any operator A is associated with its tilde field A (see Tool 1 in section 2.1).

2 This notion had not appeared in the formulation of the equilibrium thermo field dynamics (TFD) [10] which is an
operator formalism of the Gibbs ensembles. This is one of the essential difference between NETFD and TFD.
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Figure 1: System of the Stochastic Differential Equations within Non-Equilibrium Thermo Field Dynam-
ics. RA stands for the random average. VE stands for the vacuum expectation.

described by a quantum Langevin equation. This raises a question about the origin of dissipation in
the universe, which is one of the motivations of the present paper. In sub-section 1.3, we go over two
treatments of Schrodinger equation, i.e., one by the partial differential equation for wave function, and
the other by the algebra for annihilation and creation operators with the definition of vacuum. In sub-
section 1.4, we will show how to treat the quantum master equation by mapping it to a partial differential
equation for a c-number function, and how to construct the system of stochastic differential equations
in the c-number function space. This approach is quite similar to handle with the Schrodinger equation
for wave function in quantum mechanics. In section 2, we will construct the canonical operator formal-
ism for dissipative quantum open systems, i.e., NETFD, which enables us to treat dissipative systems
with the equal-time canonical commutation relation between annihilation and creation operators with a
definition of unstable time-dependent vacuum. With this new formalism, we obtain a novel viewpoint
that the time-evolution of dissipative quantum systems is controlled by a condensation of particle pairs
into the thermal vacuum. In section 3, we will introduce two kind of interaction hat-Hamiltonians, i.e.,
one is hermitian and the other non-hermitian. This process is necessary to construct the hermitian and
non-hermitian martingale operators in the following section. In section 4, we will construct a unified
canonical operator formalism for stochastic quantum systems within NETFD. Applications to the system
of damped harmonic oscillator (section 5) and of quantum Kramers equation (section 6) are performed.
The essential difference of these two systems stems from the difference in the structures of martingale.
An answer to the question raised in sub-section 1.2 is given in section 7 within the unified framework
of NETFD. Appendices are provided in order to make this paper self-contained at least for the parts
necessary to construct NETFD, which may be convenient for those who try to follow the derivations of
formulae by their own hands.

1.2 Motivation

The studies of the Langevin equation for quantum systems were started in connection with the de-
velopment of laser [11, 12, 13], and are still continued in order to develop a satisfactory formulation
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[14, 15, 16, 17, 18, 19] (see comments in [20]). Most of the mathematical approaches for quantum
Langevin equation, in which the canonical commutation relation between annihilation and creation op-
eretors preserves in time, are created based on the non-commutativity of the random force operators.

For dissipative systems, for example, we have equations for the operators (a(t)) and {af(t)) averaged
with respect to random force operators of the forms

d/dt (a(t)) = —iw(a(t)) — w(a(t)),  d/dt (a' (1)) = iw(al(t)) — w(a' (1) (1.1)

with the initial condition (a(0)) = a and (a’(0)) = a' where a and a' satisfy the canonical commutation
relation
[a, al] =1. (1.2)

The equal-time commutation relation for these operators decays in time: [(a(t)), (af(t))] = =2

Random force operators df () and dff (¢) are introduced in order to rescue this situation. If the random
force operators in the Langevin equations

da(t) = —iwa(t)dt — ka(t)dt + 2k df(t), da'(t) = iwa’(t)dt — ka®(t)dt + v2r dff () (1.3)
satisfy
[df (t), dff(t)] = dt, (1.4)

the equal-time commutation relation for the stochastic operators a(t) and af(t) preserves in time, i.e.,
d ([a(t), a'(t)]) = 0. Its left-hand side can be calculated with (1.4) as

d ([a(t), a'(t)]) = [da(t) $ o’ (t)] + [a(t) § da' (1)]

= —2rdt [a(t), a'(t)] + V2k ([df () § o' ()] + [a(t) S dfT()])

—2kdt [a(t), ol (t)] + 2& [df (t), dff(t)]

= —2xdt {[a(t), a'(t)] - 1} (1.5)

where [X Y] = X oY —Y o X is the commutator with the stochastic multiplication of the Stratonovich
type (Stratonovich product) [21] (see Appendix D). At the third equality, we used

[df(t) ¢ al(t)] = [df (t); al ()] + [df (1), da'(t)]/2 = \/K/2 [df(t), dfi(t)] (1.6)

and its hermitian conjugate. We also used the commutativity [df (¢); af(t)] = 0 for the stochastic multi-
plication of the Ito type (Ito product) [22] and the connection formula between the Ito and Stratonovich
products (see Appendix D). Then, with the initial condition (1.2), we obtain the consistent solution
[a(t), af(t)] = 1.

The above argument is of zero temperature related only to the zero-point quantum fluctuation. How-
ever, it has been extended to include the situations for finite temperature. Then, we have a crucial
question. Should we interpret that the origin of thermal dissipation is quantum mechanical? In this pa-
per, we will investigate this question [23, 24] in the course of the introduction of the system of quantum
stochastic differential equations within NETFD.

1.3 Quantum Mechanics

Let us go over briefly the Schrodinger equation (A = 1)

i0/0t |o(t)) = Hip(t)) (L.7)
with the Hamiltonian of a harmonic oscillator:
H = p5*/2m + mw?i? /2. (1.8)

The operators & and p satisfy the canonical commutation relation [%, p| = i.
Coordinate Representation
In the x-representation, the Hamiltonian reduces to

(¢|H|z'y = H(z',0/0x")(x — z), H(z,0/0x) = —(1/2m)8? /82> + mw?x? /2 (1.9)

with the properties (z|@|z') = zd(z — ') and (z|p|z') = (1/i) 8/x" §(x — x') where the states |z) are
defined by &|z) = z|z) for € R, and form the orthogonal complete set satisfying (z'|z) = 6(z' — z) and
J dz|z)(xz| = 1. Then, the Schrodinger equation (1.7) reads

i0/0t Y(z,t) = H(x,0/0x)Y(z,t) (1.10)
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with the wave function defined by (z|/(t)) = ¢(z,t).
Substituting ¢ (z,t) = u(z)e *Ft into (1.10), we have an eigen-value equation

[— (1/2m) d*/dz® + mw?2”® /2] u(z) = Bu(x). (1.11)
This is solved with the energy eigen-value
E,=n+1/2)w (n=0,1,2,3,---) (1.12)
to give the eigen-function belonging to the energy state (see Appendix A.1)
Un(2) = NpHy, (Vimwz)e ™" /2 (1.13)

with the normalization ffoooda:|un(a:)|2 = 1. Here, H,(§) is the Hermite polynomials which satisfies the
differential equation
H;(§) = 26H,,(§) + 2nHn(§) = 0. (1.14)

The variable z does not represent the coordinate of real space but of “phase-space” in the sense that
|{(z,t)|>dx gives the probability of finding a particle within the range z ~ = + dx at time t.
Number Representation

As is well-known, by introducing the annihilation and creation operators a, a! through the relations
& = +/1/2mw (a' +a) and p = iy/mw/2 (a’ —a), the Hamiltonian (1.8) becomes H = (a'a +1/2) w.
The annihilation and creation operators satisfy the equal-time canonical commutation relation [a, af] = 1.

The eigen-state |n) of the number operator a’a, i.e., afa|n) = njn) (n = 0,1,2,3,--+), is simultaneously
the energy eigen-state satisfying H|n) = E,|n) with (1.12). The states |n)’s are generated cyclically on
a vacuum |0) as |n) = (af)n /v/n! |0). The vacuum state |0) is defined by a|0) = 0.

The algebraic reconstruction of quantum mechanics in terms of the annihilation and creation operators
had put forward our deeper understanding of nature considerably in addition to provide us with its
technical transparency. It led us to the construction of quantum field theory. Within the formulation
of quantum statistical mechanics, a similar reconstruction was performed for dissipative non-equilibrium
quantum systems. We will show in this paper the development towards the construction of canonical
operator formalism.

3

1.4 Quantum Statistical Mechanics
1.4.1 Quantum Master Equation

Let us investigate what is the most fundamental characteristics of the quantum master equation for the
statistical operator (density operator) p(t), i.e., 3/9t p(t) = —iLp(t). The characteristics of the Liouville
operator L are given as follows (see also Appendix B).

D1. The hermiticy of the Liouville operator iL in the sense that (iL o)’ =iLe, e.g.,
(i[H, o))} = —i[ », H| =i[H, o], (1.15)
(o) =k{las, al+a, eal]} +26a([a, [o, al]) =17 . (1.16)
Here, e indicates an operand operator.
D2. The conservation of probability (tr p=1): tr L e = 0.
D3. The hermiticy of the density operator: pf(t) = p(t). The eigenvalues of p(t) are non-negative.
In the trace formalism, the expectation value of an observable operator A is given by
(A)y = tr Ap(t) = tr Ae™p(0) = tr e'Ft Ae = p(0) (1.17)

where we used the formal solution p(t) = e *L?p(0) and the property D2.
Then, the “Heisenberg operator” A(t) is defined by

A(t) = el Ae i1 (1.18)
which satisfies the “Heisenberg equation” with the Liouville operator L(t) = e!f*Le™ft = L.
d/dt A(t) = i[L(t), A(¢)]. (1.19)

3 In the following in this paper, we will not put “” for the symbol of operator, unless it is confusing.




Vol. 3, No. 3, 033207 2014 8

Damped Harmonic Oscillator
Here, we show how we had been dealing with quantum dissipative systems within the density oper-
ator formalism before NETFD was constructed. The quantum master equation for a damped harmonic
oscillator is given by [25]
0/0t ps(t) = —iLps(t), L=HZ+:ill (1.20)
with the symbol H X = [Hg, X| where Hg is the Hamiltonian of the system we are interested in, i.e.,
Hs =wala, w=e—p, [a,al]=1 (1.21)

with € and p being the one-particle energy and the chemical potential, respectively. II is the damping
operator defined by (1.16), i.e.,

IIX =k ([aX, a'l + [a, Xaf]) + 2k@fa, [X, af]] (1.22)

with the boson distribution function i = 1/(e*/T—1) and k = Re g [, dt >\ ([Rx (%), R} (0)]) ge®?. Here,
we have introduced the average, (---)gr = trg---pgr, with the density operator for a thermal reservoir
which is given by pr = e Hr/T | Zp with Zp = trp e="R/T. Throughout this paper, we use the unit in
which the Boltzmann constant is equal to unity. The coupling constant g represents the strength of the
interaction between the harmonic oscillator and the thermal reservoir whose temperature is 7. We see
that the one-particle distribution function, defined by

n(t) = tr afa ps(t), (1.23)
satisfies the Boltzmann equation
d/dt n(t) = =2k [n(t) — 7] . (1.24)

The above quantum master equation (1.20) can be obtained by projecting out the reservoir by means
of the damping theory [25, 26, 27], starting with the quantum Liouville equation (Liouville-von Neumann
equation)

8/0t p(t) = —iH*p(t), H=Hg+ Hgr+ H;p (1.25)
where H; = gzk(aRL + h.c.) is the Hamiltonian describing the interaction between the system and

the thermal reservoir (called a linear dissipative coupling). R]t and Ry are the operators of the thermal
reservoir. Hg is the Hamiltonian of the reservoir the explicit form of which needs not be specified to get
the master equation (1.20). The coarse-grained density operator pg(t) is defined by ps(t) = trr p(t).

1.4.2 Mapping to C-number Function Space

Fokker-Planck Equation within Coherent Stare Representation
Introducing the boson coherent state representation of the anti-normal ordering [28, 29, 30] through

pstt) = [ PGt e (1.26)

™

with the boson coherent state |z), defined by a|z) = z|z), we can map the master equation (1.20) into a
partial differential equation for the c-number function P(z,t) as [25]

9/0t P(z,t) = [—iw (/02" 2* — c.c.) + £ (002" z* + c.c.) + 2kn 07 /02*0z] P(z,t) (1.27)

where the symbol c.c. indicates to take complex conjugate. The normalization of P(z,t) is given from
(1.26) with tr ps(t) =1 as

2
/ﬂp(z,t) = 1. (1.28)
T
With the help of (1.27), we have the averaged equations of motion
d/dt (2); = —iw(2); — k(2)s, djdt (z*); = iw(z*)y — k(z")e, d/dt {|2)*)e = —26({|z]*): —n) (1.29)

where (---); = [(d®z/7) - P(z,1).
Solving the Fokker-Planck Equation
Let us solve (1.27) here for the case where P(z,t) depends only on |z|. With the transformation

F(z,1) = (552"~ 322) p(2, 1), (1.30)
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the Fokker-Planck equation (1.27) is transformed into

0/0t F(&,t) =2k (008 €+ ndJOE £D/0E) F(€,1t) (1.31)
where ¢ = |z|?. The normalization (1.28) reduces to [~ déF(¢,¢) = 1. The Fokker-Planck equation
(1.31) is solved by expanding the desired function F'(,t) as (see Appendix A.2)

F(&t) = agRy(Q)e™> (1.32)
(=0

with the right-hand side eigen-function Ry(¢) of (A.2) belonging to the eigen-value A = ¢ (¢ =0,1,2,---).
Ry(¢) is related to the Laguerre polynomials Ly(¢) satisfying the differential equation (A.5) by the relation

Re(¢) = Le(Q)e™. (1.33)
Note that Ly(¢) can be seen as the left-hand side eigen-function of (A.3) belonging to the eigen-value
A = L. The left and right eigen-functions form an ortho-normal complete set, i.e.,

[ aL R © = e, S RAOLAC) = (¢ =€), (1.34)
0 (=0

It may be worthwhile to note here that the right-hand side eigen-functions R,({) are of L»(R,), whereas

the left-hand side eigen-functions L,({) are not. We may say that Ry(¢) and L,({) belong, respectively,

to the nuclear space and its conjugate space in the Gel’fand triplet (or the rigged Hilbert space) [31].
For the case of the initial condition (see Appendix C for its physical meaning)

F(£,0) = fs(&,0) =e /"/n (1.35)

the coefficient a, in (1.32) is obtained in the form a; = [;° d¢' Le(¢")e=¢'"/" [ Substituting this into
(1.32), we can derive the solution of (1.31) as (see Appendix A.3)

F(&,t) =e D n(t),  n(t) =0+ (n—n)e 2"t (1.36)
Note that n(t) satisfies the Boltzmann equation (1.24) with the initial condition n(0) = n.

1.4.3 Stochastic Differential Equations within the C-number Function Space

Langevin Equation
The dynamics given by the Fokker-Planck equation (1.27) can be described by the Langevin equations
within the c-number function space

dz(t) = —iwz(t) — kz(t)dt + dW (1), dz(t)* = iwz(t)" — kz(t)"dt + dW (t)* (1.37)
where the random process dW (t) is supposed to satisfy
(dW (t)) =0, (dW (£)dW (t)*) = 2kndt. (1.38)

The average (- --), here, indicates to take a random average with respect to the random process dW (t).
The latter equation in (1.38) is the fluctuation dissipation theorem of the second kind.
Stochastic Liouville Equation

The stochastic Liouville equation of the Stratonovich type for the same system is given by [32, 33, 34]

df (z,t) = 2(z,t)dt o f(z,1), 2(z,t)dt = —(0/0z" dz* + 0/0z dz) (1.39)
with f(z,t) = f(z,t; 2(z,t)dt, P(z,0)), the symbol of the Stratonovich product “o” and
dz = —iwzdt — kzdt + dW (1), dz* =iwz"dt — kz*dt + dW (¢t)*. (1.40)
The stochastic Liouville equation of the Ito type for (1.39) has the expression (see Appendix A.4)
df (z,t) = Q(z,t)dt - f(z,t) + 260 0?/02*0z f(z,t) (1.41)

with the symbol of the Ito product “.”.

The easiest way to obtain the Fokker-Planck equation (1.27) for P(z,t) = (
is realized by averaging the stochastic Liouville equation of the Ito type (1.41
£2(z,t)dt with respect to the stochastic process dW (t).
Comments

As can be seen from (1.39), f(z,t) satisfies the conservation of probability within the relevant system:
[ d*z/m f(z,t) = 1. Note that the Langevin equation (1.37) of the Stratonovich type does not contain
the diffusion term. The stochastic differential equation of the Stratonovich type [21] allows us to proceed
calculation as if the stochastic function z(t) were an analytic one. The fluctuation-dissipation theorem
of the second kind given in (1.38) is introduced in order that the Langevin equation (1.37) is consistent
with the Fokker-Planck equation (1.27).

f(z, 8 2(z, t)dt, P(2,0)))
) over all possibilities of
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2 Canonical Operator Formalism for Dissipative Systems

2.1 Basics of NETFD
Let us list up first the technical basics of NETFD.

Tool 1. Any operator A in NETFD is accompanied by its partner (tilde) operator A. Here, the tilde
conjugation ~ is defined by

(A1A2)N = 1211142, (01A1 + C2A2)~ = CIAl + C;AQ, (A)N = A, (AT)N = AT (21)
Tool 2. Equal-time commutativity between the tilde and non-tilde operators: [A, B] = 0.
Tool 3. Thermal state condition for the thermal bra-vacuum (1: (1]AT = (1]A.

The general characteristics of the Liouville equation in sub-section 1.4 are rephrased in NETFD as
follows. Dynamics of the system is described in NETFD by the Schrodinger equation (quantum master
equation) (h =1)

8/t |0(t)) = —iH |0(t)). (2.2)

The property of the time-evolution generator (hat-Hamiltonian) is specified as follows.

B1. The hat-Hamiltonian H satisfies the characteristics named tildian: (iH)~ = iH.
H is not necessarily hermitian operator.

B2. The hat-Hamiltonian has zero eigenvalue for the thermal bra-vacuum: (1|H = 0.
This is the manifestation of the conservation of probability, i.e. (1|0(¢)) = 1.

B3. The thermal vacuums (1| and |0) are tilde invariant: (1|~ = (1], |0)~ =|0).
They are normalized as (1]0) = 1.

Within NETFD, the expectation value of an observable operator A is given by

(A) = (LAJ0(t)) = (1}AV ()[0) = (1|V' ()" AV (1)]0) (2.3)
where we used the property (1/H = 0 and the formal solution |0()) = V (£)|0) with the time-evolution
operator V(t) = e *Ht satisfying R .

d/dt V(t) = —iHV(t) (2.4)

with the initial condition V' (0) = 1. We see that the Heisenberg operator
A(t) = VU AV (b) (2.5)
satisfies the Heisenberg equation for dissipative systems
djdt A(t) = i[H(t), A(t)] (2.6)

with H(t) = V(t) " LHV (t). Note that V ()~ = V(¢).
The equation of motion for the averaged quantity (1|A(%)|0) is derived by means of the Heisenberg
equation (2.6) by taking its vacuum expectation:

d/dt (1|A(£)[0) = i(1[[H (1), A(1)]]0). (2.7)
The same equation can be also derived with the help of the master equation (2.2) as
d/dt (1]A|0(t)) = —i(1|AH|0(t)). (2.8)

We emphasize here that the existence of the Heisenberg equation of motion (2.6) for coarse grained
operators is one of the notable features of NETFD. This enabled us to construct a canonical formalism
of the dissipative quantum field theory, where the coarse grained operators a(t) etc. in the Heisenberg
representation preserve the equal-time canonical commutation relation

[a(t), ' ®] =1,  [a(t), a'(®)] =1. (2.9)
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2.2 Dissipative Unstable Particles (Semi-free Fields)

Quantum Master Equation
Let us consider the quantum master equation (2.2) with the hat-Hamiltonian

H=Hs+ill, Hs=uw(ala-a'a), (2.10)

II = —k[(1+27) (a'a+a'a) — 2(1 +7) aa — 2Ratat] — 267 (2.11)

which can be derived axiomatically [3] or by means of the principle of correspondence [1, 2] (see Ap-
pendix A.5.1).4

Note that, from the Heisenberg equation (2.6) with (2.10), we have an equation of motion for the
vector (1]A(t):

d/dt (1A(t) = i(L[[H(t), A®)] = i(1|[Hs(t), A®)]
—& {(L[A(t), al(®)]a(t) + (Lla'(®)[a(t), AD)]} + 2ka(L|[a(t), [A(t), a'(#)] (2.13)

written in terms of non-tilde operators only with the help of Tool 3, i.e., (1|a(t) = (1|at(t). Applying
the ket-vacuum |0) to (2.13), we obtain the equation of motion for the averaged quantity (2.7).
Thermal Doublet

Let us introduce the thermal doublet notation by a(t)*=' = a(t), a(t)*=2 = a'(t), a(t)*="' = a'(t) and
a(t)*=? = —a(t). Then, the canonical commutation relation (2.9) can be written as [a(t)*, a(t)’] = 6"
with a(t)* = V~1(t)a*V (t) and a(t)* = V~1(t)a*V (t). Making use of the thermal doublet notation, the
hat-Hamiltonian (2.10) reduces to

- _ .= - _ 1+ 2n —2n
_ [T — L ApY v uy __
H =wad"d" +ill +w, II =—-ka"A"a" +k, A —<2(1+ﬁ) _(1+2ﬁ)> (2.14)
and the Heisenberg equations for the semi-free particle become
d/dt a(t)" = z[ﬁ(t), a(t)*] = —i(wd*” — ik A*)a(t)", (2.15)
d/dt a(t)* = i[f[(t), a(t)"] = a(t)"i(wd"™* — ik A""). (2.16)

Annihilation and Creation Operators
Let us introduce the annihilation and creation operators y(t)*=! = ~(t), v(t)*=2 = 7%(t), 3(t)*=' =
() and 7(£)"=* = () by

0 =B, A0 a5 o s = (10 T0) e
)

my is the one-particle distribution

with the time-dependent Bogoliubov transformation B(t)** where n(t
function satisfying the Boltzmann equation (1.24).
The annihilation and creation operators satisfy the canonical commutation relation [y(¢)*, F(¢)"] =

0", and annihilate the bra- and ket-vacuums at the initial time:

1oy =0, (15F@) =o. (2.18)
The equation of motion for the thermal doublet v(¢)* has the form (see appendix A.7)
d/dt v(t)* = —i [wo"” —ikTh' ]'y( ) (2.19)
where the matrix 74" is defined by 74! = —732 = 1, 72? = 12! = 0. The solution of (2.19) is given by
At = exp {—i (W — il (¢ — )} 4 (E')". (2.20)

Two-Point Function (Propagator)
The time-ordered two-point function G(¢,¢)*” has the form

G(t,t)" = —i(1T [a(t)*a(t")"]10) = [B~ ()G (t,t)B(¢")]"™ (2.21)

4 We are dealing with the case in which the initial ket-vacuum |0) = |0(¢t = 0)) is specified by a|0) = fat|0) with a real
quantity f. Here, we are neglecting the initial correlation [35]. The initial condition of the one-particle distribution function
n = n(t = 0) is related to f by the relation (see Appendix A.6)

n=71/01- 1) (2.12)
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where
R /
6,1y = =310 = (50 Gl ). (222
GR(t tl) = —if(t — tl)e—i(w—in)(t—t'), GA(t tl) ( —t)e —i(w+ir)(t— t) (2.23)

In deriving the above expression, we used the elements of the solution (2.20) with some algebraic manip-
ulations. For example,

G(t, )" = —i(UT[y(t)v(t) )]0} = —i [9(15 — )LDy ()]0) + 0(' — 1)(1r* ()7 (1)]0)
= —if(t — t')e HWTIIt) — GR(4 ¢, (2.24)
In the third equality, we used
(L) F(E)]0) = e 1y (#) 7 (#)]0) = e~ 01, (2.25)
(LFEFFB)I0) = Ay )yF(1)]0)~ = e @Hm =), (2.26)
Miscellaneous

The representation space (thermal space) of NETFD is the vector space spanned by the set of bra
and ket state vectors which are generated, respectively, by cyclic operations of the annihilation operators
v(t) and #(t) on (1], and of the creation operators v¥(t) and ¥ () on |0).

The normal product is defined by means of the annihilation and the creation operators, i.e. v (t), ¥ (t)
stand to the left of v(¢), 4(t). The process, rewriting physical operators by means of the normal product
with respect to the annihilation and creation operators, leads to a Wick-type formula, which in turn leads
to Feynman-type diagrams for multi-point functions in the renormalized interaction representation. The
internal line in the Feynman-type diagrams is the unperturbed two-point function (2.21).
Condensation of Particle Pairs

Introducmg the anmhllatlon and creation operators in the Schrédinger representation v} =t = Ve,

=2 = 4% 3471 = 4% and 777 = —%, through the relation
Ve =V OV, A =TV () (2.27)
with V(£) being specified by (2.4), we can rewrite the hat-Hamiltonian (2.10) as
H=w(yty—3%) +ill, [ =-r (v +7 5 +200) - 71757 (2.28)

It is easy to see from this normal product form of H that it satisfies B2 in sub-section 2.1, since the
annihilation and creation operators satisfy

wlo@®) =0,  (15F =o. (2.29)
Substituting (2.28) into the quantum master equation (2.2), we have
0/dt |0(t)) = =2k [n(t) —A] v AT |0(t)) = dn(t)/dt v 5F|0(2)). (2.30)

It is solved to give

MmmmUW%ﬂa$mewrmmWW» (2.31)

This expression tells us that the time-evolution of the unstable vacuum is realized by the condensation of
'y,'f’y,f—pairs into the vacuum. The attractive expression (2.31), which was obtained first in [36], led us to
the notion of a mechanism named the spontaneous creation of dissipation [37]. We can obtain the result
(2.31) only by algebraic manipulations. This technical convenience of the operator algebra in NETFD,
which is very much similar to that of the usual quantum mechanics and quantum field theory, enables us
to treat dissipative quantum systems simpler and more transparent [8, 9].

The expression (2.30) also shows that the vacuum is a functional of the one-particle distribution
function n(t). The dependence of the thermal vacuum on ny(t) is given by

8/6ni () [0())) = 77 10(1))- (2.32)

We see that the vacuum |0(#)) represents the state containing the macroscopic object described by the
one-particle distribution function ng(¢). The quantum master equation (2.2) can be rewritten as

[% B / Tk dngt(t) 6nj(t) 0£)) =0. (2:33)
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This shows that the unstable vacuum, in this case, is migrating in the super-representation space spanned
by the one-particle distribution function {ny(t)} with the velocity {dny(t)/dt} as a conserved quantity.
Diagonal Representation
The hat-Hamiltonian (2.10) can be also written in the form
H = w(d'd - d'd) — ir(d'd + dtd) (2.34)
where d*=! = d, d*=2 = d', d*=! = d' and d"=2 = —d are defined through the Bogoliubov transformation
1+a -7 )

A (2.35)

@ =B, @ =a’B, B = (
The initial ket-thermal vacuum specified by a|0) = faf|0) can be expressed in terms of d and d' as
d|0) = (n —n) d'|0). Tt is easy to see from the diagonalized form (2.34) of H that
dit)y =V Ht) d V(t) =de Wt dl () =V He) df V() =df e (R, (2.36)
The difference between the operators which diagonalize H and the ones which make H in the form
of normal product is one of the features of NETFD, and shows the point that the formalism is quite
different from usual quantum mechanics and quantum field theory. This is a manifestation of the fact
that the hat-Hamiltonian is a time-evolution generator for irreversible processes. In thermal equilibrium
state n(t) = 7, they coincide.
Irreversibility
Let us check here the irreversibility of the system. The entropy of the system is given by
St) =—{n@)Inn(t) — [1+n)]In[l +n()]}, (2.37)
whereas the heat change of the system by
d'Q = wdn. (2.38)
Thermodynamics tells us that
dS = dS. + dSZ, dsS, = de/TR, dS; > 0. (239)
The latter inequality in (2.39) is the second law of thermodynamics. Putting (2.37) and (2.38) into (2.39),
for dS and dS., respectively, we have a relation for the entropy production rate [38]
d/dt S;(t) = d/dt S(t) —d/dt Sc(t) = 2k [n(t) — a]ln {n(¢)[1 + a]/A[1 + n(t)]} > 0. (2.40)
It is easy to check that the expression on the right-hand side of the second equality satisfies the last

inequality which is consistent with the last equation in (2.39). The equality realizes either for the thermal
equilibrium state n(t) = i, or for the quasi-stationary process x — 0.

3 Interaction Hat-Hamiltonian

3.1 Hermitian Interaction Hat-Hamiltonian

The simplest hermitian interaction hat-Hamiltonian may be given by

H)=H, - H,, H=ila'bt) —bl(t)a] (3.1)
where b(t) and bf(t) are operators in the external system and are assumed to commute with the operators
a, al etc. of the relevant system. The tilde and non-tilde operators of the external system are related
with each other by (|bt(¢) = (|b(¢).

Applying the bra-vacuum (1| for the relevant system on (3.1), we have

(1H] = —i(1|[aB*(t) + o' B* (1)) (3.2)
Here, we introduced a new operator R
B (1) = bf(t) — b(1) (3.3)
which annihilates the bra-vacuum (| for the external system, i.e., (|8% = 0. If we apply the bra-vacuum
(| on (3.1) in addition to (1|, we observe that {(1|H; = 0 where we introduced (1] = (| - (1].

The above investigation shows that a simple introduction of an interaction hat-Hamiltonian of the
form (3.1) violates the conservation of probability within the relevant system. It can be understood by
considering the quantum master equation

0/t |0()) = —i(H + H})|0(t)), (3.4)
and apply (1|. Note that the conservation of probability is satisfied for the total system, i.e., the relevant
system and the external system, as can be seen by applying (1| to (3.4).
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3.2 Non-Hermitian Interaction Hat-Hamiltonian

Let us consider the case where the quantum master equation

8/t |0(t)) = —i(H + H!|0(t)) (3.5)

satisfies the conservation of probability within the relevant system, i.e.,
(11H{ =0. (3.6)

It is satisfied with the interaction hat-Hamiltonian (see appendix A.8)
H] = i[y*B(t) + t.cl], (3.7)
vt =4t —a, B(t) = ub(t) + vb' (), pw+v=1 (3.8)

The creation operator 4% annihilates the ket-vacuum (1|, i.e., (1}y% = 0. The annihilation operator (t)
satisfies the equal-time commutation relation

[B(t), B*()] = 1. (3.9)

3.3 Relation between the Two Interaction Hat-Hamiltonian

Note that the hermitian hat-Hamiltonian H] of (3.1) and the non-hermitian one H}' of (3.7) are related
with each other by

H, = H' —i[v,8%(t) + t.c] (3.10)
where we introduced
Y = pa+ vl (3.11)

which forms a canonical set with v* in (3.8), i.e., [y,, 7¥] = 1. Here t.c. stands for tilde conjugation.

4 Unified System of Quantum Stochastic Differential Equations

4.1 Quantum Brownian Motion (QBM)

QBM in Hilbert Space

Let us introduce b; and bI denoting, respectively, boson annihilation and creation operators at time
t € [0,00) satisfying the canonical commutation relations [b,bl] = (¢ — s) and [b;, bs] = b}, bi] = 0. The
bra- and ket-vacuums (| and |) are defined, respectively, by (|} = 0 and b;|) = 0. Note that (| = |)' since
here we are considering the unitary representation of b; and bI.

We see that the quantum Brownian motion defined by B; = fot dt' by and B} = fot dt' bI, with
By =0 and Bg = 0 has the characteristics of the Brownian motion [17], i.e., [B;, Bi] = min(¢,s). The
increments dB; = By, 4t — By = bydt and dB;r = BLdt — B;r = bIdt annihilate the vacuum, i.e., (|dB;r =0
and dB;|) = 0, which are consistent, with the definition of random force, i.e., (|dB;|) = (|dBf|) = 0. The
boson Brownian motion is specified by the multiplication formulae within the weak relation, expecting
that the vacuum expectation is taken later on, for the increments dB; and dB;r in the form dB; dB,;r =dt,
while other multiplications are zero.

QBM in Thermal Space

Let us introduce operators by, bI and their tilde conjugates which satisfy the commutation relations
among them, i.e., [by, bl] = [bs, bl] = 6(t — s) and [by, bs] = [by, bl] = 0.

Thermal degrees of freedom can be introduced by the Bogoliubov transformation under the demand
that the expectation value of bib, should be (b/b,) = Ad(t — s) with i > 0 which is consistent with
the thermal state conditions (b} = (|b; and b|) = [n/(1+)]bi|). Here, (---) = (|---|) indicates an
expectation with respect to the tilde invariant thermal vacuums satisfying (|~ = (| and [}~ = |).

Now, we introduce new operators c;, éf and their tilde conjugates, which annihilate the thermal
vacuums, i.e., (|¢f = (|&f =0 and ¢|) = &|) = 0, through the Bogoliubov transformation

=By, =ty (B (4.1)

with (2.35). Here, we used the thermal doublet notations /=" = ¢,, #=2 = &, &= = ¢f, &% = ¢
and b*=" = by, =2 = b, B=' = b, b=7 = b;. This new operators satisfy the canonical commutation
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relations [¢;, ¢f] = 6(t — s). In the following, we will use the representation space constructed on thermal
vacuums (| and [).

With the increments dCt = cgdt dCt = 5gdt and dBt, dBt for the Quantum Brownian motions
with £ standing for null or ¢ or }, the Bogoliubov transformation (4.1) reduces to dB; = dC; + ndC’t ,
dB;r =(1+ ﬁ)déf +dC} and their tilde conjugates. Since the moments of dCtli and dé’,ﬁi in thermal space
satisfy (dCy) = (dCy) = (dC;) = (dC}) = 0, (dCf dCy) = (dC; dCy) = 0 and (dCydC}F) = (dC,dCF) = dt,
the calculation of moments of quantum Brownian motion in the thermal space can be performed, for
instance, as (dBydB]) = ((dC; + ndCH)[(1 + n)dC} + dCy]) = (1 + #)(dCdC}) = (1 + n)dt. We finally
arrive at the weak relations

dB! dB, = ndt, dB, dB] = (n+1)dt, dB, dB, =ndt, dB] dBl = (n+1)dt (4.2)

and their tilde conjugates under the agreement that the expectation should be taken with the vacuum
states (| and |) representing the thermal quantum Brownian motion.

4.2 System of Quantum Stochastic Differential Equations

Quantum Stochastic Liouville Equation
Let us start the consideration with the stochastic Liouville equation of the Ito type:

dl0f(8)) = —iFLz.adt |07(1)). (4.3)

For the type of the stochastic multiplications, see Appendix D. The generator Vf (t), defined by |0f(t)) =
V}(1)|0), satisfies
dVy(t) = —iH s dt Vi (t) (4.4)

with Vf (0) = 1. The stochastic hat-Hamiltonian ﬁf,tdt is a tildian operator satisfying (i?flﬁtdt)” =
i?flf,tdt. The thermal ket-vacuum is tilde invariant, i.e., |07(¢))~ = [0¢(2)).

From the knowledge of the stochastic integral, we know that the required form of the hat-Hamiltonian
should be

7:[f7tdt:f{dt+:th:, ﬁ:ﬁ5+iﬁ, gSZHS—gS, ﬁ:ﬁR+ﬁD (4.5)

where ITg and IIp are, respectively, the relazational and the diffusive parts of the damping operator II.
The martingale th is the term containing linearly the operators representing the quantum Brownian
motion dBy, dB and their tilde conjugates, and satisfies (|:dM,:|) = 0. The symbol :dM, : indicates to
take the normal ordering with respect to the annihilation and the creation operators both in the relevant
and the irrelevant systems (see (5.2) below). It is assumed that, at ¢ = 0, a relevant system starts to
contact with the irrelevant system representing the stochastic process included in the martingale dM, .5
Taking the random average by applying the bra-vacuum (| of the irrelevant sub-system to (4.3), we
can obtain the quantum master equation (2.2) with Hdt = (|H,dt|) and |0(¢)) = (|0;(t)).
Quantum Langevin Equation
The dynamical quantlty A(t) of the relevant system is defined by the operator in the Heisenberg
representation, A(t) = V L(t) A Vf( ), where Vf_l(t) satisfies (see Appendix A.9)

AV, () = V) iy, dt, Ty dt = Hpedt+idMy: dM: (4.6)

Within NETFD, the Heisenberg equation of the Ito type for A(t) is the quantum Langevin equation
of the form (see Appendix A.10)

dA(t) = i[Hs(t)dt, A(t)] —:d'M(t): [:d'M(t):, A®t)], (4.7)
Hy(t)dt = V() Hpadt Vi),  d'M(t) =V (t) dM, Vi(2). (4.8)

The martingale d' M (t) satisfies (| d'M(t): :|) = 0, and includes the operators of the quantum Brownian
motion of the form d'B(t) = V L(t) dB; Vf( ), d'Bi(t) = Vf_l(t) dB, Vf(t) and their tilde conjugates.
Since A(t) is an arbitrary observable operator in the relevant system, (4.7) can be the Ito formula
generalized to quantum systems.

5 Within the formalism, the random force operators dB; and dBI are assumed to commute with any relevant system
operator A in the Schrédinger representation: [A, dB¢] = [A, de] =0fort>0.



Vol. 3, No. 3, 033207 2014 8

Applying the bra-vacuum (1| = (|(1| to (4.7) from the left, we obtain the Langevin equation for the
bra-vector ((1|A(¢) in the form

A(LA(t) = i(L|[Hs(t), A@®)]dt+ (LAGT(E)dt — i(1|At) d M (2): . (4.9)

In the derivation, use had been made of the properties (1|At(t) = (1|A(t), (|d'Bt(t) = (|d'B(t) and
(1]d'M(t) = 0.

By making use of the relation between the Ito and Stratonovich stochastic calculus, we can rewrite
the Ito stochastic Liouville equation (4.3) and the Ito Langevin equation (4.7) into the Stratonovich ones,
respectively, i.e., (see Appendix A.11)

d|0s(t)) = —iHpdt o |04(t)),  Hyudt = Hedt + i(Ildt+ :dM,: :dM,: /2) + dM;, (4.10)
dA(t) = i[H(t)dt S A(t)], Hy(t)dt = Hs(t)dt + i[IT(t)dt+ :d' M(t): :d' M(t): /2]+ :d'M(t): . (4.11)

Fluctuation-Dissipation Relation
The fluctuation-dissipation theorem of the second kind for the multiple of martingales, :dM;: :dM, :
is determined by the criterion that the term IIdt 4+ :dM;: :dM,: /2 in I?th of (4.10) should not have
a diffusive term, i.e.,
cdMy: :dM,: = —2IIpdt. (4.12)

The origin of this criterion is attributed to the way how the Langevin equation was introduced in
physics, i.e., relaxation term and random force term were introduced in mechanical equation within the
Stratonovich calculus. Therefore, there is no dissipative terms in stochastic equations of the Stratonovich
type. We adopted this criterion in quantum cases. The weak relation (4.12) may be called a generalized
fluctuation-dissipation theorem of the second kind.
Heisenberg Operator for QBM

The Heisenberg operators of the quantum Brownian motion are defined by B(t)
Bf(t) = Vf_l(t) B} V¢ (t) and their tilde conjugates. Their increments dB#(t) =
with # being nul, { and/or tilde are given by (see Appendix A.12)

dB#(t) = d'B#(t) + i[:d'M(t):, d' B#(t)] = dBY +i[:d'M(t):, dB}]. (4.13)

= (
d(Vi () Bf V;(t)

In the second equality, we used the property d'B#(t) = dBt# which is due to the commutativity
[dBf; V;(t)] = 0. For the increment of the martingale operator dM(t) = d(Vfil(t)MtVf(t)) in the
Heisenberg representation, we obtain, by the similar process as (4.13), the important relation

dM(t): = d' M(t): +i[:d' M(t):, :d'M(t):] = :d'M(t):, (4.14)
which shows that the martingale operator in the Heisenberg representation satisfies the condition for the

martingale operator, i.e., (|:dM(t):|) = 0.
It may be worthy to note that

d'B*(t) = dBf = V; ! (t) o dB} o Vi (t) — (i/2) [:d'M(t):, d'B* (1)), (4.15)
td M (t): = Vi (t) o :dM;: o Vi (t). (4.16)

5 Application to Stochastic Semi-Free Particle

Model

We will apply the formalism in section 4 to the model of a harmonic oscillator embedded in an
environment with temperature 7. The Hamiltonian Hg of the relevant system is given by Hg = wa'a
where a, a' and their tilde conjugates are stochastic operators of the relevant system satisfying the
canonical commutation relation [a, a'] =1 and [a, @!] = 1. The tilde and non-tilde operators are related
with each other by the relation (1|at = (1|@ where (1] is the thermal bra-vacuum of the relevant system.

Since we are interested in the system of stochastic semi-free particles, we will confine ourselves to the
case where the stochastic hat-Hamiltonian H;dt is bi-linear in a, at, dBy, dB,;r and their tilde conjugates,
and is invariant under the phase transformation a — ae?, and dB; — dB; e'’. This gives us the system
of linear-dissipative coupling. Then, we find that IIx, and IIp consisting of IT introduced in (2.28) have,
respectively, the expressions

Iy = —ﬁ('yi'y,, + ’?i’?u), IIp = 26(n + V)’thfﬁ (5.1)
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where we introduced a set of canonical stochastic operators v, = pa+val and v* = af —a with p+v =1
which satisfy the commutation relation [y,, v*] = 1. The parameter v (or p) is closely related to the
ordering of operators when they are mapped to c-number function space with the help of the coherent
state representation [6], i.e., v = 1 for the normal ordering, » = 0 for the anti-normal ordering and
v = 1/2 for the Weyl ordering. The new operators ~* and 4% annihilate the relevant bra-vacuum, i.e.,
(1ly* =0 and (1|5 = 0.
Martingale Operator
Let us adopt the martingale operator:

(M = dMT) s+ A :d]\;It(—’_): (5.2)
M) =iy AWy + W), dMT) = —i(dWy, + dWEA,). (5.3)
Here, the annihilation and creation random force operators dW; and de are defined, respectively, by
AW, = V2k(udB; + vdB}),  dW;" = V2k(dB] — dB,). (5.4)
The latter annihilates the bra-vacuum (| of the irrelevant system, i.e, (|dW," = 0 and (|dW,* = 0. Note
that the normal ordering : - - - : is defined with respect to v’s and dWW’s.

The real parameter A\ measures the degree of non-commutativity among the martingale operators,
i.e.,

[2d ), cdhr( ) s ) = —201gdt. (5.5)
In deriving this, we used the weak relations
AW, AWy = dW, AWy = 26 (R +v)dt,  dW, dW;" = dW, dW;* = 2kdt (5.6)
and
(AW, dWF] = 2kdt (5.7)

which should be compared with (1.4).

There exist at least two physically attractive cases [6, 23, 24], i.e., one is the case for A = 0 giving
non-hermitian martingale dM; = iv2x[(a’ — @)dB] + t.c], and the other for A = 1 giving hermitian
martingale dM; = iv/2s[(a'dB; —dB]a) +t.c.]. The former case follows the characteristics of the classical
stochastic Liouville equation where the stochastic probability density function satisfies the conservation
of probability within the phase-space of a relevant system (see section 1.4), i.e.,

(1|dM; =0 (5.8)

which means that the stochastic Liouville equation preserves its probability just within the relevant
system. Whereas the latter employs the characteristics of the Schrédinger equation in quantum mechanics
where the norm of the stochastic wave function preserves itself. In this case, the consistency with the
structure of classical system is destroyed [6, 23, 24].

The fluctuation-dissipation theorem of the system is given by

cdMy: :dM,: = —2(MIg + ITp)dt (5.9)
where we used the weak relations : dM, ) : :th(,) = —2IIpdt, M) :d]\;.ft(ﬂ . = —2[Igdt and

:th(+) : :th(+) t= :th(+) : :th(f) : = 0 which can be derived by making use of (5.6).
For the present model, the hat-Hamiltonian for Vf_l, (4.6), is given by
Hdt = Hdt +i((1 — 2)\)[Ig — [Ip)dt + d1, (5.10)
the one for the stochastic Liouville equation, (4.10), of the Stratonovich type by
Hypdt = Hsdt +i(1 — \) [Igdt + dM; (5.11)
and the one for the Langevin equation, (4.11), by
Hy(t)dt = Hs(t)dt + i(1 — \) [T (t)dt+ :d' M(t): . (5.12)

Heisenberg Operators for QBM
The increments of the Heisenberg operators of the Quantum Brownian motion are given by

dB(t) = d'B(t) + V2 [(1 = A v (a'(t) — a(t)) — Na(t)] dt, (5.13)
dBY(t) = d'BY(t) — V2 [(1 = A) u (al(t) — a(t)) + Na®(t)] dt (5.14)
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and their tilde conjugates. Then, we have
AW (t) = d'W (t) — X2k, (t)dt, — dW*(t) = dW ()" — 2ky* (t)dt. (5.15)

Note that d'B(t) = dB;, d'Bt(t) = dB], dW(t) = dW; and d'W (¢)¥ = dW,;*. By making use of (5.15),
we see from (5.2) that

cdM(t):

iy H (6)dW (1) + 5F () dW (8)] = iAW ()3 (8) + dWF (£)3, (1)]
= iy (AW (1) + 75 ()W ()] = AW 1)y, () + dWF ()7, (1)]
= :d'M(t): . (5.16)
Quantum Langevin Equations
The quantum Langevin equation of the Ito type is given by

dA(t) = i[Hs(t), A(t)|dt
+r{(1 =20 (7 (Ol (1), AD] +7F (O F(8), A)])
+ D), AB () + [0, ()]%( )t
+2H(n+'/)[7i(t), (), A®)])dt
—{[rF(0), AB)AW; + 57 (t), AH)]dW:}
A +MAW [, (1), AW+ W (), A} (5.17)
= i[Hs(t), A(t)]dt
+r{y (O (1), A®)] +
+(1 =207 (), AD (1) + FF (@), AD]7(1)}dt
+25(n + )77 (1), (1), AWl
—{F (@), A@W (1) + [77(2), AW ()}
FMAWF () (8), A®)] +dW T ()7 (1), AD)]} (5.18)
with ]ffs(t) = fol(t)]ffsvf (t) = Hs(t) — Hs(t). Note that the quantum Langevin equation is written by
means of the quantum Brownian motion in the Schrédinger (the interaction) representation (the input

field [39]) in (5.17), and by means of that in the Heisenberg representation (the output field [39]) in
(5.18).

The quantum Langevin equation for the bra-vector state, (1| A(t), reduces to

d((1|A(t) = i(1[[Hs(t), A(t)ldt

7 OF (1), A)]

—k {(UIAW), ot (®a(®) + (LT Ola(t), A(®)]} dt
+2rR((1l[a(t), [A(), o (@)]dt
F(UIA®), ot (]V2r dB; + (L[VZr dB][a(t), A(t)] (5.19)

= i(1[[Hs(t), At)]at
—k(1 = 2X) {(L|[A(D), a'()]a(t) + (1la’(D]alt), At)]}dt
+2rn{(1|[a(t), [A(t), af(t)]]dt
+(1[A®t), at(®)]V2k dB(t) + (1|V2k dBt(t)[a(t), A(t)]. (5.20)
The relation between the expression (5.19) and (5.20) can be interpreted as follows. Substituting the

solution of the Heisenberg random force operators (5.13) and (5.14) for dB(t) and dBT(t), respectively, into

(5.20), we obtain the quantum Langevin equation (5.19) which does not depend on the non-commutativity
parameter .

The quantum Langevin equations for a(t) and af(t) of the system reduce to
da(t) = (—iw — k) a(t)dt + dW; — 2(1 — Nvk [df(t) —a(t)] dt — AvdW;F, (5.21)
da'(t) = (iw — &) al (t)dt + dW; +2(1 — Nk [a'(t) — a(t)] dt + ApdW;F. (5.22)
Note that the last two terms in the above equations disappear when one applies (1| to them, i.e., applying

(1] = (1{] to (5.21) and (5.22), we obtain, for any values of A, u and v, the quantum Langevin equations
of the vectors (1|a(t) and ((1|a’(¢) in the forms

d(1]a(t) = —iw((1|a(t)dt — &{1]a(t)dt + vV2r(1]dB;, (5.23)
d((1]at () = iw(1]a’ (t)dt — w{(1]at ()dt + V2r((1|dB]. (5.24)
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Note that these equations have the same structure as those in (1.3) and in (1.37).
For A =0, (5.21) and (5.22) become, respectively, to

da(t) = —iwa(t)dt — ka' (t)dt + dW;, da'(t) = iwa®(t)dt — ka(t)dt + dW; (5.25)
where we put p = v = 1/2, for simplicity. For A = 1, (5.21) and (5.22) read, for any value of p,
da(t) = —iwa(t)dt — ka(t)dt + V2kdB,, dal(t) = iwa®(t)dt — ka' (t)dt + V2kdB], (5.26)
respectively, which should be compared with (1.37).

6 Application to Quantum Kramers Equation

Quantum Master Equation
Let us find out the general structure of hat-Hamiltonian which is bilinear in (z, p, Z, p). The operators

z, p and their tilde conjugates satisfy the canonical commutation relations [z, p] =i and [#, p] = —i.
The conditions (iH)~ = ¢H and (1|H = 0 give us the general expression
ﬁ:ﬁs-l-iﬂ, ﬁsZHs—gs, Hg :p2/2m+mw2x2/2, (6.1)
II=1IIg+IIp, IIz=—ic(x—32)(p+p) /2, Ip=—rmw(l+20)(z—7)°/2. (6.2)

Here, we neglected the diffusion in z-space. The Schrédinger equation (2.2) with (6.1) gives the quantum
Kramers equation [40].
The Heisenberg equation for the dissipative system is given by

A

dfdt x(t) = i[H(t), =(t)] = p(t)/m + & [2(t) — 2(1)] /2, (6.3)
d/dt p(t) = —mw?z(t) — & [p(t) + p(t)] /2 + ikmw(1 + 27) [2(t) — F(t)] . (6.4)

Applying the bra-vacuum (1] of the relevant system, we have the equations for the vectors:
d/dt (1z(t) = (Lp(t)/m, d/dt (1|p(t) = —mw?(L|z(t) — £(1lp(t). (6.5)

Non-unitary Stochastic Time-Evolution
The stochastic Liouville equation of the Ito type (4.3) is given with

Hpodt = Hdt + dM,, dM; = (z — 2)(dX, + dX,), dX,;=+/kmw (dB; + dB})/2. (6.6)

Here, dBy, dB;r and their tilde conjugates are the operators representing quantum Brownian motion.

The martingale operator dM; satisfies (5.8), and the generalized fluctuation-dissipation theorem of the

second kind (4.12). Taking the random average with respect to the stochastic process dB¢, the stochastic

Liouville equation (4.3) reduces to the quantum master equation (2.2) for |0(¢)) = (|0¢(¢)) with (6.1).
The the Langevin equation for this hat-Hamiltonian is given by

da(t) = i[H(t)dt, x(t)] — dM(t) [dM(t), z(t)] = p(t)dt/m + k [z(t) — F(t)] dt/2, (6.7)
dp(t) = —mwz(t)dt — k [p(t) + p(t)] dt/2 — (dX; + dX;) (6.8)

where we used the properties dX (t) = dX, and dX (t) = dX;. Applying the bra vacuum (1] to (6.7) and
(6.8), we have the Langevin equations for vectors

d(1|z(t) = (Up()dt/m,  d{1|p(t) = —mw?(1]z(t)dt — £{1|p(t)dt — 2((1|dX. (6.9)
The averaged equation of motion is given by applying |0} to (6.9) in the forms

dfdt (@(t)) = (p(ON/m,  d/dt {p(t)) = —mw*{z(®)) — £{p()) (6.10)

where ((---) = (1](| - - -|}|1). These averaged equations can be also derived from (6.3) and (6.4) by taking
the average ((- - -).
Unitary Stochastic Time-Evolution

The martingale operator representing position-position interaction may be given by dMV = zdX; —
#dX,;. We did not include the crossing terms between tilde and non-tilde operators to be consistent
with the microscopic interaction Hamiltonian. The generalized fluctuation-dissipation theorem for this
martingale operator is given by dMUdMU = —2IIVdt with IIV = —kmw(1 + 27) (x — ) /8. Then, the
Ito stochastic hat-Hamiltonian becomes ﬁ%tdt =HYdt + dMY with HY = Hg +iIIV. Here, HY is the
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hat-Hamiltonian for the quantum master equation. Note that the present quantum master equation is
different from (2.2) with (6.1) and (6.2).
The Langevin equations for z(t) and p(t) become

dx(t) = p(t)dt/m, dp(t) = —mw’z(t)dt — dX; (6.11)

where we used the fact dX (t) = dX;. Applying (1| to (6.11), we have the Langevin equations for the
vectors ((1|z(t) and {(1|p(t) in the forms

d(1z(t) = (Up(dt/m,  dGUp(t) = —me?(1[z(t)dt — (1]dX, (6.12)
which are different from (6.9).

7 What is the Origin of Dissipation?

Within the system of non-unitary time-evolution generator V(t) (A = 0) which is constituted of the
commutative random force operators dW; and dW;, the random force operators dW (t) and dX (¢) in the
Heisenberg representation is, respectively, equal to dW; and dX; in the Schrédinger representation, i.e.,

AW (t) =dW,,  dX(t) = dX;. (7.1)

In the application of the system of unitary time-evolution generator (A = 1) to the damped har-
monic oscillator, the random force operators in the Heisenberg representation are related to those in the
Schrédinger representation by

AW (t) = dW; — kv, (t)dt,  dWF(t) = dW;" — kyF(t)dt. (7.2)

The second terms show up because of the non-commutativity, whose appearance is essential in order
to make the unitary system consistent with corresponding quantum master equation. The martingale
operator is constituted by non-commutative random force operators due to the linear dissipative coupling
between the relevant and irrelevant sub-systems.

On the contrary, in the application of the unitary time-evolution generator (A = 1) to the quantum
Kramers equation, where the martingale operator is constituted only by commutative random force op-
erators because of the position-position coupling between the relevant and irrelevant sub-systems, the
random force operators in the Heisenberg representation is equal to those in the Schrodinger representa-
tion, i.e.,

dX(t) = dX;. (7.3)

Therefore, the unitary system cannot be consistent with corresponding quantum master equation.

The above investigation tells us that the origin of dissipation cannot be quantum mechanical. In spite
of this unsatisfactory nature of the unitary system, it is attractive since hat-Hamiltonian for microscopic
system is hermitian and there is no mixing terms between tilde and non-tilde operators, i.e., the hat-
Hamiltonian should have the structure H = H — H with H! = H for microscopic systems. In fact, we
succeeded to extract the correct stochastic hat-Hamiltonian for the stochastic Kramers equation by an
appropriate coarse graining of operators (the stochastic mapping) in time and corresponding renormaliza-
tion of physical quantities [41]. The simple limit [42] does not give us the correct Kramers equation. This
something touchy situation should be investigated based on the unified system of stochastic differential
equations shown in this paper. It will be reported in the future publications.

A Derivations

A.1 Solution of (1.11)
With the non-dimensional parameters £ = y/mwz and A = 2E/w, (1.11) reduces to

d?/d€* u+ (A — €)u = 0. (A1)
With the transformation u(§) = H(f)e’§2/2, (A.1) further reduces to H" —2¢6H' — (A —1)H = 0

which reminds us with the Hermite polynomials defined by e~*"+25¢ = S°°° [H, (£)/n!]s™ or H,(¢) =

e§2(—d/d£)”e’§2. Comparing with the differential equation (1.14) for the Hermite polynomials, we see
that the energy is quantized as (1.12) and that the eigen-function belonging to the energy state is given
by (1.13).
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A.2 Solution of (1.31)

Putting F(&,t) = R(¢)e 2% in (1.31), we have an eigen-value equation for the right-hand side eigen-
functions in the form

CR"(¢) + (1 + QOR'(Q) + R(¢) = —AR(C). (A.2)
The differential equation (an eigen-value equation for the left-hand side eigen-functions) adjoint of (A.2)
turns out to be

CL"(Q) + (1 = QL (¢) = =AL(Q). (A.3)
Note that a further transformation R(¢) = e ¢ f((¢) in (A.2) gives us (f” + (1 — () f' = —\f.
Now, we remember that the Laguerre polynomials defined by

00 ¢ k
S L0 = e, L@ = g =30 (1) @
=0

k=0

satisfy the differential equation
CLY(Q) + (1= QLy(C) + £Le(Q) =0 (£=0,1,2,--). (A.5)
For example, L¢(C)’s are given by Lo(¢) = 1, Ly(¢) = 1 = ¢, La(¢) = 1 — 2 + ¢2/2, Ly(¢) = 1 — 3¢ +
3¢?/2 — (*/6, and satisfy L,(0) =1, L}(0) = —.
We notice in the comparison of (A.5) with (A.3) that the eigen-value A shouldbe A =¢ (¢ =0,1,2,---).
A.3 Derivation of (1.36)

The substitution of the expression a, into (1.32) gives

- %Z/OOO d¢' Le(C YRy (C) e €' P/m g 2ntt

_ Z/ AC'Ly(C)Ry(¢) e e=C (Amm)/n g=2ntt

0o ‘ > n ¢
_ %ZRE(O (n ; n> a—2mlt _ %efg Z:LE(C) <n - ne2nt> = %efﬁ/n(t) (A.6)

with n(t) in (1.36). For the second equality, e ¢ ™™ was divided into two exponentials. For the third
equality, we used the generating function (A.4) of the Laguerre polynomials for e=¢' (*=m)/n and (1.33).
For the fourth equality, the orthogonality (1.34) was used. For the final equality, we used the formulae
(1.33) and (A.4) again.

S

A.4 Derivation of (1.41)
By making use of the connection formula (D.4) between the Ito and Stratonovich products, one has
dW(t) o f(z,t) = dW(t) - f(z,t) + dW (t)df (z,t)/2
=dW(t) - f(z,t) — 0/0z" AW ()dW (¢)* f(2,t)/2 — 8/Dz AW (£)dW (t) f(z,t)/2

=dW(t) - f(z,t) — k0 0/0z" f(z,t), (A7)

dW (t)* o f(z,t) =dW (t)* - f(z,t) — kA 00z f(z,t) (A.8)
where we used the fluctuation-dissipation relations

dW (t)dW (t)* = 2kndt, dW () dW (t) =0, dW()*dW ()" =0 (A.9)

within the stochastic convergence. Substituting (A.7) and (A.8) into the Stratonovich type (1.39), i.e
df (z,t) = [—iw(0/0z" z* —c.c.) + k(0/0z" 2" + c.c.)|dtf(z,1)

—0/0z* dW (t)* o f(z,t) — 8/0z AW (t) o f(2,1), (A.10)
we obtain the stochastic Liouville equation of the Ito type (1.41) with the properties (dW (¢)- f(z,t)) =0
and (dW (t)* - f(z,t)) = 0 which provide us with

(dW(t) o f(z,t)) = —kAi 0/0z* P(z,t), (dW(t)*o f(z,t)) = —kn 0/0z P(z,t). (A.11)
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A.5 Derivations of the Semi-Free Hat-Hamiltonian

A.5.1 The Principle of Correspondence

The principle of correspondence is defined by [43, 1, 2] ps(t) «— [0(t)), A1ps(t) A +— A142T|0(t)>. It is
easy to see that the master equation (1.20) with the damping operator (1.22) reduces to the Schrédinger
equation (2.2) accompanied by the hat-Hamiltonian (2.10) and (2.11).

It is Crawford [44] who noticed first that the introduction of two kinds of operators enables us to
handle the quantum Liouville equation as the Schrédinger equation.

A.5.2 Axiomatic Derivation

The hat-Hamiltonian of the semi-free field is bi-linear in (a, @, a’,a'), and is invariant under the phase
transformation a — ae®: .
H = giafa + g2a'a + gsaa + gsa’a’ + go, (A.12)

where ¢’s are time-dependent c-number complex functions. The operators a, a', etc. satisfy the canonical
commutation relation [ax, a;r(,] = Oxx and [dk, &L,] = Ok . The tilde and non-tilde operators are
mutually commutative. Throughout this paper, we do not label explicitly the operators a, af, etc. with
a subscript k for specifying a momentum and/or other degrees of freedom. However, remember that we
are dealing with a dissipative quantum field.

B1 in section 2.1 makes (A.12) tildian:

H =w(a'a —ata) +ill, IT = ¢i(ata + a'a) + crad + czaal + ¢4 (A.13)
where we introduced new quantities w = fe g1 = —Re g2, ¢; = Sm g1 = Sm g3, c2 = Sm g3, c3 = Sm gy
and ¢4 = Sm go. With the help of Tool 3 in sub-section 2.1, i.e., (1|a’ = (1|@, B2 gives us relations
2¢1 4+ o + ¢35 =0 and ¢3 + ¢4 = 0. Then, (A.13) reduces to I=c (ata+ata) + coad — (2¢; + ¢2) atat +
(2¢1 + ¢2).

Let us write down here the Heisenberg equations for a and a' (see (2.6)):

d/dt a(t) = —iwa(t) + cra(t) — (2¢1 + &) al (),  d/dt o' (t) = iwal () — c1al () — wa(t). (A.14)

Since the semi-free hat-Hamiltonian H is not necessarily hermitian, we introduced the symbol { in order
to distinguish it from the hermite conjugation . However in the following, we will use } instead of if,
for simplicity, unless it is confusing. By making use of the Heisenberg equations in (A.14), we obtain the
equation of motion for a vector (1|af(¢)a(t) in the form

d/dt (1]a' (t)a(t) = —2r(1|af (t)a(t) + i X <(1] (A.15)
where we introduced x and X<, respectively, by
K =c1 +ca, < =i(2c; + c2). (A.16)

In deriving (A.15), we used Tool 3 in order to eliminate tilde operators.
Applying the thermal ket-vacuum to (A.15), we obtain the equation of motion for the one-particle
distribution function n(t) = (1|a’ (t)a(t)|0) = (1]ata|0(t)) as

d/dt n(t) = —2kn(t) +iX<. (A.17)

The equation (A.17) is the Boltzmann equation of the system. The function X< is given when the
interaction hat-Hamiltonian is specified.

If it is assumed that there is only one stationary state, we can refer the stationary state as a thermal
equilibrium state. We will assign the thermal equilibrium state to be specified by the Planck distribution
function with temperature T n(t — co) = 2 = 1/(e“/T — 1). Then, we have from (A.17)

iX< = 2kn. (A.18)

In this case, the Boltzmann equation (A.17) reduces to (1.24).
Solving (A.16) with respect to ¢; and cs, and substituting them into (A.13) with (A.18) for X<, we
finally arrive at the most general form of the semi-free hat-Hamiltonian (2.10) and (2.11).
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A.6 Derivation of (2.12)

Let us treat (1]a@|0) in two ways. In the first place,

(1]aal0) = (1]afat|0) = f ((1]a'al0) + (1]0)) = f (n + 1) (A.19)
where we used the tilde conjugate of a|0) = fat|0) for the first equality, and the canonical commutation
relation [a,a’] = 1 for the second. On the other hand,

(1|ad|0) = (1|aa0) = (1|a’al0) = n. (A.20)
Here, for the first equality, we used Tool 2 in sub-section 2.1 and, for the second equality, Tool 3 with
A = a. Equating (A.19) and (A.20) leads us to (2.12).

A.7 Derivation of (2.19)
The equation of motion (2.19) for the thermal doublet (¢)* is derived as
d/dt v(t)* = (dB()*" [dt)a(t)” + B(t)* da(t)” /dt
[(@B(t)/dt) B~ ($)]™ 7(8)” — i [B(t) (w 1 — ixA) B~ ($)]"™ ()"

= i Wb — iR y(t)” (A.21)
where the matrix 74 is defined by 73! = —722 = 1, 74? = 73! = 0. For the third equality, we used the
relations 4B(1) dn(t) 4B(1) dn()

t 1 -1 dn(t o, n(t
= i 4 —RB = A.22
dt (0 0 ) it dt ®) at (A4.22)

BHAB ™ (t) = r3 + 2[n(t) — A 7o, T4 = < - ) . (A.23)

The Boltzmann equation (1.24) has been used also.

A.8 Derivation of (3.7)

We assume that the interaction hat-Hamiltonian is globally gauge invariant and bilinear:
H!" = i{h1atb(t) + hoa'bT(t) + haa b(t) + had bF(t)
+hsalb(t) + hea'bl (t) + hra b(t) + hga bi(t)} (A.24)
where the quantities h’s are time-independent complex c-numbers.
The tildian (B1 in section 2.1) (¢H{')™~ = iH,' gives us

hi =hs, h3 =hg, hi=hs, hj=hs. (A.25)
The requirement (3.6) that the Schrodinger equation (3.5) has the characteristics of the conservation of
probability within the relevant system leads us to the relations

hi+hs3=0, hy+hs=0. (A.26)
With (A.25) and (A.26), (A.24) reduces to
H =i[y*B(t) + t.c.] (A.27)

where we introduced v* = at — @ and B(t) = hyb(t) + hobl (¢).
Let us consider the moments

([f(t)ﬁ(t» = (hi + ha){BT (D (1)b(1)) + R5(b(£)DT (1)}, (A.28)
(BOBE) = (hi + h3){hi (BT (£)b(1)) + ha(b()T ()} (A.29)
where we used Tool 2 and Tool 3 in sub-section 2.1 for b(t), b(t) etc.. We are using the symbol
(--+) = {|---|t) without specifying the dynamics which determines the ket-vacuum |t} of the external

system. For the present purpose, the details of its dynamics are not required. With the further use
of the property Tool 2 of the commutativity (8(¢)3(t)) = (B(t)3(t)) provides us with the relations
(h1 + h2)hi = (b} + h3)hy and (hy + h2)h3 = (hf + h3)he which reduce to hihs = hih} = (hihg)*, and
allow us to put hy = pe®® and hy = ve? where u = |hy| and v = |ha|.

The vector (|3(t) is calculated as (|3(t) = (u + v)e??(|b(t). The further requirement that the norm
of (|3(t) should be equal to that of (|b(t), i.e., |[{|B()]] = ||{|b(¢)||, leads us to the relation (3.8). This
requirement of norms indicates that the intensities of the external operators 3(t) and b(t) should be equal,
and makes the operators %(t), defined by (3.3) and (3.8) with the real numbers p and v satisfying the
last equation in (3.8), a set of canonical operators, i.e., (3.9). Putting the phase factor e on b(t) and
bf(t), we have the non-hermitian interaction hat-Hamiltonian (3.7) with v* and 3(¢) defined in (3.8).
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A.9 Derivation of (4.6)

Let us begin with the differentiation of Vf(t)Vf_l(t) = 1 with respect to time ¢ within Stratonovich
product, i.e., d[Vf(t)fol(t)] =dV(t) o fol(t) +Vi(t) o defl(t) = 0 whose structure is the same as the
one for the analytic function or the “analytic operator” within quantum mechanics and quantum field
theory. Rewriting this into the differential formula within Ito product with the help of the connection
formula (D.4) between the stochastic products, we have d[V} (t)Vf_1 (t)] = dVy (t)Vf_l(t) +Vy (t)de_l(t) +
de(t)defl(t) = 0 which can be arranged up to the order of O(dt) as

AV (1) = —[Vr(8) + dVE (O] dVr (VA () m [L =V @dVe(OIV () dVp (V2 (). (A30)

Substituting (4.4) into (A.30), we obtain de_l(t) = Vf_l(t) i[H g 4dt + iH dt Hy dt] which reduces to
(4.6) by making use of 7:[f7tdt 7:[f,tdt ~ :dM,: :dM;: that is correct up to the order of O(dt).5

A.10 Derivation of (4.7)
The Substitution of (4.4) and (4.6) into
dA(t) = dV, () AV () + V(1) AdVy(t) + dV,  (8) AdVy (t) (A.31)

gives the Ito formula (4.7) up to the order of O(dt). Note that (A.31) is derived by applying the
connection formula (D.4) to the differential formula dA(t) = de_l(t) o AV (t) + Vf_l(t)A o dVy(t) within
the Stratonovich calculus which has the same structure as the one for the analytic function or for the
“analytic operator” within quantum mechanics and quantum field theory.

A.11 Derivation of (4.10) and (4.11)

Rewriting the stochastic Liouville equation of Ito type (4.3) into the one of Stratonovich type as d|0;(t)) =
—iH s 4dt o |0£(t)) +iHdt d0s(t)) with the help of the connection formula in the Schrédinger represen-
tation which has the same structure as (D.4), we obtain up to the order of O(dt)

A0y (1)) = —i(1 — iH . dt]2) " Hypdt 0 d0s(8)) ~ —i[Hpadt + iFlypdt Fyidt)2]0]05(8)).  (A.32)

The substitution of H ¢dt Hy dt ~ :dMy: :dM;: into (A.32) gives (4.10) within the accuracy up to the
order of O(dt).
Substituting (4.5) into (4.7), we have

dA(t) = i[H(t)dt, A(t)] +i[:d' M(t):, A(t)]— :d'M(t): [:d'M(t):, At)] (A.33)

where we omitted the symbol “.” for simplicity. Rewriting the term [[d'M(t):, A(t)] as [:d'M(t):, A(t)] =
[d'M(t): S A@®)] — [ d'M(t):, dA(t)]/2, and substituting the quantum Langevin equation of Ito type
(4.7) for dA(t), we have

[d' M(t):, A(t)] =[:d'M(t): 2 A(t)] — [:d'M(t):, [:d'M(t):, A(t)]]/2 (A.34)

within the accuracy up to the order of O(dt). Here, we introduced the notation [X $Y]=XoY —Y o X.
The substitution of (A.34) into (A.33) gives (4.11) as

dA(t) = i[H(t)dt, A@)] +i[:d' M(t): S A@t)] — {:d'M(t):, [:d'M(t):, At)]}/2
= i[H(t)dt, A(t)] +i[:d'M(t): S At)] — [:d'M(t): :d'M(t):, A(t)]/2. (A.35)

Note that the quantum Langevin equation of the Stratonovich type has the same structure as the Heisen-
berg equation for the “analytic operator” within quantum mechanics and quantum field theory.

A.12 Derivation of (4.13) and (4.15)
Let us begin with the relation

d(Ty Vi(t)) = dIy Vi(t) + Ty dVi(t) + dIy dVi(t) = dTy Vi(t) + Tipar dVi(t) (A.36)

6 One can proceed the derivation similarly starting with d[Vf_l(t)Vf(t)] =0.
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an operator I'; which is linearly dependent on Bf (# = null, { and/or tilde) where we introduced the
notation Iyyg = Iy + dI;. The increment dI'(t) of the Heisenberg operator I'(t) = Vf_l(t) Iy Vp(t) is
estimated as follows:
dr'(t) = (dV; ' (t) T Vf( )+ Vi (#) d(Ty Vi(0) + (dVyH (1)d(Ty V(1)
= d'T() + V7 OV () dVi ' (8) Tivar + Dovar V5 (2) Vf '(t)
+Vf(t) V() Dorar dVE () V()}V (8)

= dlp(t) + Vf_l(t){lﬂ;tdt Ft+dt - Ft+dt 'Lr}‘[ﬁtdt + Hf,tdt Ft—i—dt Hf7tdt}‘7f (t)

=d'I(t)+i[:d M(t):, d'T'(t)] (A.37)
with d'I"(t) = Vf_l(t) dT; Vi(t). At the second equality in (A.37) we used (A.36), and at the third
equality we have substituted (4.4) and (4.6). At the last equality, we substituted (4.5) with (4.6), and

kept the terms up to the order of O(dt) by considering dB; ~ O(v/dt)0:dM; :~ O(V/dt) and Hdt ~ O(dt).
In the derivation, we used the properties

[Hdt, Bf.,]=0, [:dM;:, Bf]=0, [:dM;:, B}, ,]=/[:dM,:, dBf]~ O(dt). (A.38)

We are omitting the Ito product symbol “-” for simplicity. For Iy = By and [} = Mt, we have (4.13) and
(4.14), respectively.
Similar estimation gives

Vil(t) - Ly - Vi(t) = Vi (8) o dTy o Vi(t) — (i/2) [:d'NI(1):, d'T(2)]. (A.39)

For Iy = B; and I, = M, we have (4.15) and (4.16), respectively.

B Comment on Liouville Operator

Let us investigate the characteristics of the Liouville operator L e = i[H, e ]| by considering the super-
operator A(ty,t;) defined by A(tz, )X = elt2 Ae=iLt1 X, The part e *L*1 X can be analyzed as follows.
Differentiate it with respect to t1, we have d/dt; e "'t X = —iLe™Ft1 X = —j[H, e~*F*1 X] and obtain
e~ X = e~iflt1 Xeiflt1 - Similar analysis with respect to to gives A(ty, t1)X = etHt> de=iHt1 X eiH (t1—t2)
Then, we see that the Heisenberg superoperator

A(H)X = etlt e it Y = ot gomiHl X (B.1)
reduces to the usual Heisenberg operator A(t) = et Ae=*H#t, We can interpret that the operation e~**
on X in (B.1) is canceled by the operation el

C Boson Coherent State

The boson coherent state |a) = ea“T_o‘*“|0) is the eigen-state of the annihilation operator a satisfying
ala) = ala), and therefore its adjoint (| = |a)f satisfies (a|a’ = (ala*. The vacuums |0) and (0|
are defined by a|0) = 0 and (0]a’ = 0. The coherent state has the overlapping and consists of an
over-completeness set, i.e.,

. 2o
(ay|oz) = e*%\a1|2,%|a2|2+alaz, /T|a)( |=1. (C.1)

OZ[I 76![1

= eral e ag—1al*/2 e have |o) = e 1o/2 525 (ol /v/01)|() where
|6) = [(a")*/Ve]]0) (C.2)

is the eigen-function of the number operator a'a satisfying afa|) = £|().
Now, let us derive the c-number function P(z,t = 0) introduced in (1.26) for the statistical operator
of the canonical ensemble

Using the property e

p= ewa'a/To /Z. (C.3)
Representing it by the number states (C.2), we have
(Eplm) = Sy mem/T0 /(1 +0),  n=1/(/T —1). (C.4)
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Here, n is the boson distribution function at temperature Tp.
Within the coherent state representation, we can calculate the matrix element (a|p|a) as follows:

(alpla) = Z Z (al0)(Llplm)(m|a) = (al@)e™t/To (¢|)
£=0 m=0 4:0
_ o—lol?/2 oty o L —lal?/(14n)
1+n Ze 0N " 1+n (©5)

Here, we used the matrix element (C.4) for the second equality, and the overlapping (C.1) for the third
equality. Substituting (C.5) into

d2a1

o —(a1—a)(af—a™
(alpla) = [ =2 Plar) (afan)(arfa) = [ EE Plan) e-oseeize) (©6)
we have the integral equation
L ) g () /M Play,y1) e~ (002 e=(n—0)*, 7
1+n T

where we have changed the integration variables by a = x+iy. Inspecting (C.7), we can put the Gaussian
form P(z1,y1) = Ae—K21e=Kvl without loss of generality. Then, the integral equation (C.7) reduces to
o=@ /(Ln)e=v*/(14n) /(1 4 p) = Ae~lol’K/(K+1) /(K 4 1) which determines the coefficients A and K as
A =1/n and K = 1/n. We finally have the c-number function corresponding to the statistical operator

(C.3) as P(a) = e~lel*/n/p,

D Stochastic Multiplications

The definitions of the Ito [22] and the Stratonovich [21] multiplications are given, respectively, by

X(t)-dY () = XA [Y(t+dt) - Y (B)], dX()- V()= [X(t+dt) — X(B)]Y(?), (D.1)
X(t)odY(t) = {[X(t+dt) + X(B)]/2} [V (t + dt) — Y (1)], (D.2)
AX(t) o Y (t) = [X(t + dt) — X (1)] [V (¢ + dt) + Y ()]/2 (D.3)

for arbitrary stochastic operators X (¢) and Y (¢) in the Heisenberg representation. From (D.1), (D.2) and
(D.3), we have the formulae which connect the Ito and the Stratonovich products in the differential form
as

X(t)odY(t) = X(t)-dY (t) +dX(t)-dY (t)/2, dX(t)oY(t) =dX(t)-Y(t)+dX(t)-dY(t)/2. (D.4)
This can be proven by the identity

[X({t+dt) — X [Y(t+dt)+Y ()] /2
=[X{t+dt)—X@)]Y(#)+[X({E+dt)— X@)][Y(t+dt) —Y(t)]/2. (D.5)
The connection formulae for the stochastic operators in the Schridinger representation are given, in the
same form as (D.4) for X; and Y;.
With the help of (D.1), (D.2) and (D.3), we obtain the differentiation formula for the product of two
stochastic operators X (¢)Y(¢) in the form
dIX@)Y ()] = X(t+dt)Y(t+dt) — X ()Y ()
=dX(t) oY (t) + X(t) o dY(t) (D.6)
=dX(t)-Y(t)+ X(t)-dY(t) + dX (¢) dY (2). (D.7)
Therefore, if one uses the Stochastic multiplication of the Stratonovich type, the differentiation formula
for the product of two stochastic operators turns out to be the same as those for “analytic” operators.
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