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Lec. 1 Reminders of the BCS

theory

First we give a brief review of the theory of conventional superconductors, namely the

BCS theory. In this section, we start with the singlet pairing case to describe the basic

physics of the superconductivity.

1.1 Basic model

Just as in the original BCS theory, we consider here the Sommerfeld model for sim-

plicity: we consider N spin-1/2 fermions in a free space. We assume N to be sufficiently

large and even. For such a system, the kinetic energy for a free particle is

εk ≡ ξk − µ(T ), (1.1)

where ξk =
k2

2m
, and µ(T ) is the chemical potential of the system. We note here that

µ(T ) can be regarded as a constant1, and it is equal to the Fermi energy

µ(T ) = εF =
k2F
2m

. (1.2)

We assume that the fermions are interacting via an attractive potential, so that the

interaction part can be represented as

V̂ =
1

2

∑
p,p′,q

σ,σ′

Vp,p′,q a†
p+ q

2
,σ
a†
p′− q

2
,σ′ap′+ q

2
,σ′ap− q

2
,σ. (1.3)

We do not discuss here the origin of this interaction (we will present the discussion in

Sec. 1.3.4), but rather try to see how the system behaves under such an attractive inter-

action.

1In fact, the temperature in question is very small in discussing the BCS theory, and thus the tem-
perature dependence of the chemical potential due to the Fermi statistics is negligible. In addition, the
effect of the superconducting phase transition to the chemical potential is very small in the BCS theory.
Therefore, we can regard µ(T ) as a constant.
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1.2 BCS theory at T = 0

1.2.1 BCS wave function

Under an attractive interaction, the Fermi system forms Cooper pairs and they undergo

Bose-Einstein condensation. When the Bose-Einstein condensation occurs, a macroscopic

number of bosons occupy the same state. Therefore, as a fundamental assumption, we

think that all the pairs of fermions occupy the same pair wave function φ:

ΨN = Ψ(r1σ1, r2σ2...rNσN) = A[φ(r1σ1; r2σ2)φ(r3σ3; r4σ4) · · ·φ(rN−1σN−1; rNσN)],

(1.4)

where A is the antisymmetrizer. For now, we restrict our attention to the case where pairs

are formed in the spin-singlet, s-wave orbital angular momentum state, and the center of

mass of the pairs is at rest. Then the pair wave function φ becomes

φ(r1σ1; r2σ2) =
1√
2

[
|↑〉1 |↓〉2 − |↓〉1 |↑〉2

]
φ(r1 − r2), (1.5)

where φ(r) = φ(−r). If we define the Fourier transform χ(k) by

φ(r) =
∑
k

χ(k)eikr, (1.6)

then we find

φ(r1σ1; r2σ2) =
1√
2

[
|↑〉1 |↓〉2 − |↓〉1 |↑〉2

]∑
k

χ(k)eik(r1−r2)

=
∑
k

χ(k)√
2

[
|k ↑〉1 |−k ↓〉2 − |k ↓〉1 |−k ↑〉2

]
=
∑
k

χ(k)√
2

[
|k ↑〉1 |−k ↓〉2 − |−k ↓〉1 |k ↑〉2

]
=
∑
k

χ(k)a†k↑a
†
−k↓ |vac〉 ,

(1.7)

where we have used χ(k) = χ(−k) in the second last line. Therefore, if we define

Ω† ≡
∑
k

χ(k)a†k↑a
†
−k↓, (1.8)

the N -body wave function defined in Eq. (1.4) is rewritten as

ΨN = (Ω†)N/2 |vac〉 =
[∑

k

χ(k)a†k↑a
†
−k↓

]N/2

|vac〉 . (1.9)

Note that this is automatically an eigenstate of N̂ . We also note that the normal ground

state is a special case of this form of the wave function, since we can see

Ψnorm
N =

∏
k<kF

a†k↑a
†
−k↓ |vac〉 =

( ∑
k<kF

a†k↑a
†
−k↓

)N/2

|vac〉 (1.10)

from the Fermi statistics, and the final expression corresponds to the BCS wave function

with χ(k) = θ(kF − |k|).
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1.2.2 Alternative form of the BCS wave function

In the previous subsection, we have obtained the many-body wave function which au-

tomatically conserves the number of particles N . In principle, we can minimize the free

energy with this class of wave functions and study the thermodynamic properties of the

system, but it is a tough work. Therefore, we replace the wave function in the following

way:

(Ω†)N/2 → expΩ† ≡
∞∑

N/2=0

1

(N/2)!
(Ω†)N/2, (1.11)

and we try to minimize Ĥ − µN̂ instead of Ĥ. Hence, up to the normalization, the wave

function becomes

Ψ ∝ exp

(∑
k

χ(k)a†k,↑a
†
−k,↓

)
|vac〉 =

∏
k

exp
(
χ(k)a†k,↑a

†
−k,↓

)
|vac〉. (1.12)

Since (a†k,↑a
†
−k,↓)

2 = 0 due to the Fermi statistics, it reads

Ψ ∝
∏
k

(1 + χ(k)a†k,↑a
†
−k,↓)|vac〉. (1.13)

To make clear the physical meanings of the following calculations, we go over to the

representation in terms of occupation spaces of k ↑,−k ↓; let |00〉k be the corresponding

vacuum, and define

|10〉k = a†k,↑|00〉k, |01〉k = a†−k,↓|00〉k, and |11〉k = a†k,↑a
†
−k,↓|00〉k. (1.14)

Then the wave function Ψ can be represented as

Ψ =
∏
k

Φk, (1.15)

where

Φk ∝ |00〉k + χk|11〉k. (1.16)

To satisfy the normalization condition, multiply by the factor 1/
√
1 + |χk|2, and then we

obtain

Φk = uk|00〉k + vk|11〉k, (1.17)

with uk =
1√

1 + |χk|2
and vk =

χk√
1 + |χk|2

. Thus, we have obtained the general form

of the BCS wave function as

ΨBCS =
∏
k

(uk|00〉k + vk|11〉k) =
∏
k

(
uk + vka

†
k,↑a

†
−k,↓

)
|vac〉, (1.18)

which does not conserve the number of particles. The normal ground state corresponds

to a special case of this wave function, which can be obtained by setting uk = 0, vk = 1

for k < kF and uk = 1, vk = 0 for k > kF .
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We should make some remarks on the BCS wave function and the above derivation.

At first we should notice that this is the very general result for the spin-singlet paring

systems in the sense that the coefficients uk and vk can depend on the direction of the

momentum k. Since the phase transformation (uk, vk) → eiφk(uk, vk) has no physical

effect, we can choose all uk to be real.

As a consequence of the number conservation, we can find that the transformation

vk → eiφvk, where φ is independent of k, has no physical effects either. To see this, let

us define

ΨBCS(φ) =
∏
k

(
uk + eiφvka

†
k,↑a

†
−k,↓

)
|vac〉. (1.19)

From this, we can easily check that
∂

∂φ
ΨBCS(φ) = iN̂ΨBCS(φ). When we define

〈Â〉φ = Ψ†
BCS(φ)ÂΨBCS(φ), (1.20)

where Â is a physical (hence number-conserving) operator, we can see that this expectation

value does not depend on the phase φ:

d

dφ
〈Â〉φ = iΨ†

BCS(φ)[Â, N̂ ]ΨBCS(φ) = 0. (1.21)

We can, therefore, construct the number-conserving many body wave function:

ΨN =
1

2π

∫ 2π

0

dφΨBCS(φ)e
−iφN

2 . (1.22)

1.2.3 Pair wave function

Let us discuss the relative wave function of a Cooper pair. In the BCS theory , the pair

wave function at T = 0 is expressed as

Fk = ukvk, (1.23)

or as its Fourier transformation F (r) =
∑

k Fke
ikr.

The physical meaning of the pair wave function becomes clearer if we evaluate the

expectation value of the potential energy 〈V̂ 〉:

〈V̂ 〉 = 1

2

∑
pp′q

σσ′

Vpp′q〈a†p+q/2,σa
†
p′−q/2,σ′ap′+q/2,σ′ap−q/2,σ〉. (1.24)

For the BCS wave function, only three types of terms contribute to the expectation

value: the Hartree term (q = 0), the Fock term (σ = σ′,p = p′), and the pairing term(
p+ q

2
= −

(
p′ − q

2

)
, σ = −σ′). The Hartree term can be evaluated as

〈V̂ 〉Hartree =
1

2

∑
pp′

σσ′

Vpp′0〈npσnp′σ′〉. (1.25)
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Especially, for the case of the local potential V = V (r), the Hartree term 〈V̂ 〉Hartree

becomes a constant 1
2
V (q = 0)〈N̂2〉.

The Fock term, corresponding to σ = σ′,p = p′, is given by

〈V̂ 〉Fock = −1

2

∑
pqσ

Vppq〈np+q/2,σnp−q/2,σ〉 = −1

2

∑
pq

|vp+q/2|2|vp−q/2|2. (1.26)

The last equality is a consequence of the uncorrelated nature of the BCS wave function,

and it can be easily checked by a direct calculation.

Finally we evaluate the pairing term. For convenience, we introduce the following

variables: k = p+ q/2 and k′ = p− q/2. Then, we have

〈V̂ 〉pair =
1

2

∑
k,k′

Vkk′〈a†k′,σa
†
−k′,−σ′a−k,−σak,σ〉, (1.27)

where Vkk′ = Vk+q/2,k′−q/2,k−k′ , which is V (k−k′) for a local potential V (r). Again using

the factorizable nature of the BCS wave function except for the O(1/N) contributions,

this reduces to

〈V̂ 〉pair =
1

2

∑
kk′σ

Vkk′〈a†k′,σa
†
−k′,−σ′〉〈a−k,−σak,σ〉

=
1

2

∑
kk′σ

Vkk′〈a†k′↑a
†
−k′↓〉〈a−k↓ak↑〉.

(1.28)

At last, we have used the spin-singlet nature of the BCS wave function. We can find by

an explicit calculation that

〈a−k,↓ak,↑〉 = u∗kvk〈00|a−k,↓ak↑|11〉 = ukvk = Fk. (1.29)

Similarly, we can obtain that 〈a†k,↑a
†
−k,↓〉 = ukv

∗
k = F ∗

k . Hence, the pairing interaction is

〈V̂ 〉pair =
∑
kk′

Vkk′FkF
∗
k′ . (1.30)

In the case of a local potential V (r), we can rewrite this in terms of the Fourier component

of F (r):

〈V̂ 〉pair =
∫

d3rV (r)|F (r)|2. (1.31)

The comparison of this result with the interaction between two particles in free space

〈V̂ 〉 =
∫
d3rV (r)|Ψ(r)|2 tells us that F (r) essentially works as the relative wave function

Ψ(r) of the pair in the superfluid Fermi system. It is a much simpler quantity to deal

with than the quantity φ(r), which appears in the N -conserving formalism.

We do not yet know the specific form of u’s and v’s in the ground state, and we cannot

calculate the form of F (r) now. We, however, anticipate that it will be bound in relative

space and that we will be able to define a “pair radius” by the quantity

ξ2PR =

∫
d3r|F (r)|2|r|2∫
d3r|F (r)|2

. (1.32)

It cannot be too strongly emphasized that everything above is very general and true

whether or not the state we are considering is actually the ground state.
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1.2.4 Quantitative development of the BCS theory

We consider a fully condensed BCS state described by the N -nonconserving wave func-

tion:

Ψ =
∏
k

Φk, Φk ≡ uk |00〉k + vk |11〉k . (1.33)

From the normalization condition, uk and vk should satisfy the following relation:

|uk|2 + |vk|2 = 1. (1.34)

The values of uk, vk are determined by minimizing the free energy:

〈Ĥ〉 = 〈T̂ − µN̂ + V̂ 〉. (1.35)

Let us neglect2 the Fock term in 〈V̂ 〉 unless mentioned otherwise (we have already seen

below Eq. (1.25) that the Hartree term contributes only a constant for the local potential

case). Then, the contribution of 〈V̂ 〉 comes only from the pairing terms

〈V̂ 〉 =
∑
k,k′

Vkk′FkF
∗
k′ , Fk ≡ ukvk. (1.36)

Here, Vkk′ is a matrix element for the process where fermions change the state from

(k ↓,−k ↑) to (k′ ↑,k′ ↓). Let us consider the term

T̂ − µN̂ =
∑
k,σ

n̂kσ(ξk − µ) ≡
∑
k,σ

n̂kσεk. (1.37)

It is clear that |00〉k and |11〉k are eigenstates of n̂kσ with their eigenvalues 0 and 2,

respectively. Taking the sum of the spins, we find

〈T̂ − µN̂〉 = 2
∑
k

εk|vk|2, (1.38)

and therefore we obtain

〈Ĥ〉 = 2
∑
k

εk|vk|2 +
∑
k,k′

Vkk′(ukvk)(uk′v∗k′). (1.39)

This 〈Ĥ〉 must be minimized under the constraint |uk|2 + |vk|2 = 1.

We introduce a pretty way of visualizing the problem. Let us put

uk(= real) = cos
θk
2
, vk = sin

θk
2
expiφk, (1.40)

and rewrite the Hamiltonian as

〈Ĥ〉 =
∑
k

(−εkcosθk) +
1

4

∑
k,k′

Vkk′sinθksinθk′cos(φk − φk′) +
∑
k

εk. (1.41)

2In fact, we can shot that the Fock term have little effects. We will consider this effect later.
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The last term is a mere constant, so that we can neglect it. Next, we introduce the

Anderson pseudospin representation of the BCS Hamiltonian. We introduce a unit vector

σk with its polar angle given by (θk, φk):

sinθkcosφk = σxk,

sinθksinφk = σyk,

cosθk = σzk.

(1.42)

With this representation, the expectation value is rewritten as

〈Ĥ〉 = −
∑
k

εkσzk +
1

4

∑
k,k′

Vkk′σk⊥ · σk′⊥ = −
∑
k

σk · Hk, (1.43)

where σk⊥ is the xy-component of σk, and the pseudo-magnetic field Hk is defined as

Hk ≡ −εkẑ −∆k, (1.44)

∆k ≡ −1

2

∑
k′

Vkk′σk′⊥. (1.45)

Thus, the z-component of Hk gives the kinetic energy, while the xy-component is the

potential energy (see Fig. 1.1).

It is actually very convenient to represent ∆k and σk⊥ as complex numbers ∆k ≡
∆kx + i∆ky, σk⊥ ≡ σkx + iσky rather than representing them as vectors. Evidently, the

magnitude of the field Hk is

|Hk| = (ε2k + |∆k|2)1/2 ≡ Ek, (1.46)

In the ground state the spin σk lies along the field Hk, giving an energy −Ek. If the spin

is reversed, this costs 2Ek (not Ek!). This reversal corresponds to

θk → π − θk, φk → φk + π, (1.47)

Fig. 1.1. Schematic illustration of the vectors Hk and σk. At equilibrium, Hk and σk
should point the same direction.
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and

uk → sin
θk
2
exp(−iφk) = v∗k,

vk → −cos
θk
2

= −uk.
(1.48)

Therefore, the wave function of the excited state generated in this way is

ΨEP
k = v∗k |00〉 − uk |11〉 , (1.49)

We can easily verify that this excited state is orthogonal to the ground state Φk ≡
uk |00〉+ vk |11〉 (remember we take uk to be real).

Let us derive the BCS gap equation. Since the vector σk must point along the field

Hk in the ground state, this gives a set of self-consistent conditions for ∆k; since σk′⊥ =

−∆k′/Ek′ , we have

∆k = −
∑
k′

Vkk′
∆k′

2Ek′
. (1.50)

This is the BCS gap equation. Note that the above derivation is quite general. In

particular, we have never assumed the s-wave state (though we did assume the spin-

singlet pairing).

Let us also introduce an alternative derivation of the BCS gap equation. We simply

parametrize uk and vk by ∆k and Ek as

uk ≡ Ek + εk√
|∆k|2 + (Ek + εk)2

, (1.51)

vk ≡ ∆k√
|∆k|2 + (Ek + εk)2

. (1.52)

This clearly satisfies the normalization condition |uk|2 + |vk|2 = 1, and gives

|uk|2 =
1

2

[
1 +

εk
Ek

]
, |vk|2 =

1

2

[
1− εk

Ek

]
, ukvk =

∆k

2Ek

. (1.53)

The BCS ground state energy can therefore be written in the form

〈Ĥ〉 =
∑
k

εk

(
1− εk

Ek

)
+
∑
kk′

Vkk′
∆k

2Ek

∆∗
k′

2Ek′
. (1.54)

Here, ∆k for each k are independent variational parameters. By using ∂Ek/∂∆k =

∆∗
k/Ek, we find

ε2k
E3

k

[
∆∗

k −
∑
k′

Vkk′
∆∗

k′

2Ek′

]
= 0, (1.55)

so that we again obtain the standard gap equation.
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(a) (b)

Fig. 1.2. (a) The number distribution and (b) the pair wave function for the BCS ground

state.

For the s-wave state, ∆k is independent of the direction of k and depends only on its

magnitude |k|. Let us expect that, as in most cases of interests, ∆k is approximately a

constant ∆ over a wide range of energy ε� ∆. Then, we obtain

〈nk〉 = |vk|2 =
1

2

(
1− εk√

ε2k + |∆|2

)
, (1.56)

and

Fk = ukvk =
∆

2Ek

. (1.57)

The behavior of 〈nk〉 and Fk are illustrated in Fig. 1.2: 〈nk〉 behaves qualitatively

similarly to the normal-state at T = Tc, but falls off very slowly ≈ ε−2, rather than

exponentially. On the other hand, Fk falls off as |ε|−1 for large ε.

1.3 BCS theory at finite temperature

1.3.1 Derivation of the gap equation

To generalize the BCS theory to a finite temperature, we have to use the density

matrix formalism. An obvious way is to assume that the many-body density matrix can

be written in a product form just like the ground state wave function:

ρ̂ =
∏
k

ρk. (1.58)

Here, each Hilbert space labeled by k is spanned by the following four states:

ΨGP = uk |00〉+ vk |11〉 : “Ground pair states” ; (1.59)

ΨEP = v∗k |00〉 − uk |11〉 : “Excited pair states” ; (1.60)

Ψ
(1)
BP = |10〉 Ψ

(2)
BP = |01〉 : “Broken pair states” . (1.61)
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As regards the first two states, they can be parametrized by the Anderson variables θk
and φk. The difference from T = 0 is that there is a finite probability P

(k)
EP for a given

“spin” σk to be reversed, i.e., the pair is in the ΨEP state rather than the ΨGP state.

There is also finite probability, P
(k,1)
BP and P

(k,2)
BP , that the pair is a broken-pair state. As

to the broken-pair states, they clearly do not contribute to 〈V̂ 〉 and thus do not to the

effective field. Thus, we can go through the argument as above and obtain the result

∆k = −1

2

∑
k′

Vk,k′〈σ⊥k′〉, (1.62)

where 〈σ⊥k′〉 is now given as

〈σ⊥k′〉 =
(
P

(k′)
GP − P

(k′)
EP

)∆k′

Ek′
. (1.63)

Therefore, the gap equation becomes

∆k = −
∑
k′

Vk,k′

(
P

(k′)
GP − P

(k′)
EP

) ∆k′

2Ek′
. (1.64)

We therefore need to calculate the quantities P
(k)
GP and P

(k)
EP

3. This is simply given by

the canonical distribution4

P
(k)
GP : P

(k)
BP : P

(k)
EP = exp(−βEGP) : exp(−βEBP) : exp(−βEEP). (1.65)

As we already noted in the discussion below Eq. (1.46), the energy difference between the

ground pair and excited pair states is EEP − EGP = 2Ek
5. What is EBP − EGP? Here, a

special care should be paid. If all energies are taken relative to the normal-state Fermi

sea, then evidently the energy of the “broken pair” states |01〉 and |10〉 is εk (which can

be negative!). In writing down the Anderson pseudospin Hamiltonian, we omitted the

constant term
∑

k εk. Hence, the energy of the GP state relative to the normal Fermi sea

is not −Ek, but εk − Ek. Thus, we have

EBP − EGP = Ek, (1.66)

EEP − EGP = 2Ek. (1.67)

The broken-pair states can be regarded as states with one quasi-particle, the excited pair

state as one with two quasi-particles.

From Eqs. (1.66) and (1.67), we obtain

P
(k)
EP − P

(k)
GP =

1 + exp(−βEk)

1 + 2 exp(−βEk) + exp(−2βEk)
= tanh

(βEk

2

)
, (1.68)

3Since the states |10〉 and |01〉 are degenerate, we can calculate P
(k)
BP immediately from these quantities

and from P
(k)
GP + P

(k)
EP + 2P

(k)
BP = 1.

4Since we are talking about different occupation states, Fermi/Bose statistics are irrelevant, and the
probability of a given state with its energy E is simply proportional to exp(−βE).

5Note that Ek here is temperature dependent!
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and can derive the gap equation:

∆k = −
∑
k′

Vk,k′
∆k′

2Ek′
tanh

(βEk′

2

)
. (1.69)

Note that this gap equation can also be derived in a brute force manner: by minimizing

the the free energy F (∆k) with respect to ∆k (see appendix 5D of Ref. [1]).

1.3.2 Fk at finite temperature

As for 〈σ⊥k〉, if we recall the definition 〈σ⊥k〉 ≡ 〈a−k↓ak↑〉, we can easily see that the

broken pair states do not contribute to this quantity. Recalling that the EP and GP

states have the opposite direction in the Anderson pseudospin representation, and that

the magnitude of its xy-component is ∆k/2Ek, we obtain

〈σ⊥k〉 = Fk =
(
P

(k)
GP − P

(k)
EP

) ∆k

2Ek

=
∆k

2Ek

tanh
(βEk

2

)
. (1.70)

Thus, the pair wave function is also reduced by a factor of tanh
(
βEk

2

)
from the ground

state6.

1.3.3 〈nk〉 at finite temperature

By using Eqs. (1.59) to (1.61) and recalling that nk − 1
2
is zero for the BP states, we

obtain

〈nk〉 −
1

2
= (|vk|2 − |uk|2)P (k)

GP + (|uk|2 − |vk|2)P (k)
EP = − εk

Ek

tanh
(βEk

2

)
. (1.71)

By introducing the occupation number of the ideal Fermi gas 〈nk〉0 = θ(kF −|k|), we find

〈nk〉 − 〈nk〉0 =
[1
2
− |εk|
Ek

tanh
(βEk

2

)]
sgn(εk). (1.72)

From this, we can see that the occupation number will reduce to that for the normal

Fermi gas as T → Tc and ∆ → 0.

1.3.4 Properties of the BCS gap equation

We can immediately see that the BCS gap equation always has a trivial solution ∆k =

0 regardless of the form of the potential Vkk′ , which corresponds to the normal state.

Thus, we concentrate only on nontrivial solutions, which, as we shall see soon, depend

significantly on the form of the potential Vkk′ and the temperature T .

6Note that the value itself is far more reduced than this factor, since the value of gap ∆k decreases
from its ground state value as the temperature is raised.
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We can find two rather simple cases where no nontrivial solution exists. One is when all

Legendre components V` of Vkk′ are non-negative; see Sec. 2.4. The other case is the high

temperature limit T → ∞. In this limit, the right-hand side of the BCS gap equation

(1.50) reduces to ∑
k′

Vkk′
∆k′

2Ek′

βEk′

2
=

1

4kBT

∑
k′

Vkk′∆k′ . (1.73)

For the existence of the nontrivial solution, the potential −Vkk′ should have the eigenvalue

4kBT , which is impossible in the high-temperature limit. Thus, there is no nontrivial

solution in the limit T → ∞. We can also conclude that if there is a nontrivial solution

at T = 0, there must exist a critical temperature Tc at which this solution vanishes.

So far, we have considered the general features of the BCS theory, but in order to

obtain further insights, we confine ourselves to the case of the original BCS form, where

we approximate the potential as Vkk′ ' Vo with an energy cutoff εc around the Fermi

surface. Let us introduce the density of states at the Fermi surface by N(0) =
1

2

dn

dε

∣∣∣∣
ε=εF

.

With the replacement
∑

k → N(0)
∫
dε, we have

λ−1 =

∫ εc

−εc

tanh βE/2

2E
dε =

∫ εc

0

tanh βE/2

E
dε (1.74)

with λ = −N(0)Vo. It is obvious that nontrivial solutions do not exist for Vo > 0, as

already remarked. We therefore consider the case Vo < 0 below.

At first, we calculate the critical temperature Tc. Put β = βc, then ∆ goes to zero and

E → |ε|:

λ−1 =

∫ εc

0

dε
tanh(βcε/2)

ε
= ln(1.14βcε). (1.75)

Thus the critical temperature Tc is given by

kBTc = 1.14εc exp(−λ−1) = 1.14εc exp

(
− 1

N(0)|Vo|

)
. (1.76)

This expression does not depend on the choice of the cutoff εc because the renormalized

potential |Vo| ∼ const.+ln εc
7 cancels its dependence. Therefore, it is plausible to set the

value of the energy cutoff to be εc ∼ ωD as in the original BCS paper. By recalling that

the Debye frequency depends on the mass of the ions M as ωD ∼ M−1/2, this predicts

Tc ∼ M−1/2, which explains the isotope effect. It also ensures the self-consistency of the

above calculations: we focus on the energy region close to the Fermi surface, which can

be seen to be true since it is known experimentally that the transition temperature scales

as Tc � ωc.

7In the renormalization group analysis, the four-Fermi coupling turns out to obey the flow V (ε) =
V

1+N(0)V ln(εc/ε)
, where ε is the characteristic energy scale of the system, and V is the bare coupling

constant.
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At zero temperature, the gap equation reads

λ−1 =

∫ εc

0

dε√
ε2 + |∆(0)|2

' ln
2εc
∆(0)

. (1.77)

Then, we can find the ratio between the energy gap and the transition temperature as

follows
∆(0)

Tc
= 1.76. (1.78)

Note that this ratio is a universal constant independent of the detail of the materials. Since

∆(0) can be measured by tunneling experiments, we can confirm this relation experimen-

tally. This relation usually works quite well for weak coupling superconductors, while the

ratio becomes usually somewhat larger than 1.76 for “strong-coupling” superconductors,

where Tc/ωc is not very small.

At finite temperature T < Tc, the gap equation can be written as∫ ∞

0

dε
[tanh(βE(T ))

E(T )
− tanh(βcε)

ε

]
= 0. (1.79)

Since this integral converges, we can extend εc to εc → ∞. Then, we can easily see that

the energy gap should be written as

∆(T ) = Tcf(T/Tc), (1.80)

or equivalently,
∆(T )

∆(0)
= f̃(T/Tc). (1.81)

The temperature dependence of the energy gap is pretty close to the following form8

∆(T )

∆(0)
=
[
1−

(
T

Tc

)4 ]1/2
. (1.82)

On the other hand, near Tc, we can obtain the following result from the gap equation

∆(T )

∆(0)
∼ 1.74

(
1− T

Tc

)1/2

, (1.83)

or equivalently,

∆(T )

Tc
∼ 3.06

(
1− T

Tc

)1/2

. (1.84)

8Before the BCS theory, this temperature dependence of the energy gap was presented theoretically
by Casimir and Gorter with a phenomenological two-fluid model, which agrees well with experiments.
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1.3.5 Properties of the Fock term

In the calculation above, we have neglected the Fock term

〈H − µN〉Fock = −1

2

∑
k,k′σ

Vk,k′〈nkσ〉〈nk′σ〉. (1.85)

For a weak coupling s-wave superconductor, this is indeed a valid approximation. In fact,

if we look at the Fock term we can regard

−
∑
k′

Vk,k′〈nk′σ〉 (1.86)

as a molecular field acting on nk, changing the single particle energy as

εk → ε̃k,σ ≡ εk −
∑
k′

Vk,k′〈nk′σ〉. (1.87)

As long as Vk,k′ can be regarded as a constant around the Fermi surface, this molecular

field is simplified as

V
∑
k′

〈nk′σ〉. (1.88)

Since the integration range of k′ is far larger than the energy gap,
∑

k′〈nk′〉 can be

regarded also as a constant, so that the effect of the Fock term is only to shift the

chemical potential.

For an anisotropic case, this molecular field term depends on the angle, so that the

effect of the Fock term cannot be absorbed into the chemical potential. However, the

effect of the Fock term can be taken into account in a similar way as in Landau’s Fermi

liquid theory (see Sec. 2.2) as far as Vk,k′ is a constant with respect to |k|.

1.3.6 Pair wave function

The most important quantity characterizing the superconducting phase is the “pair

wave function” F (r) = 〈ψ↓(r)ψ↑(0)〉, or its spatial Fourier transform Fk =
∫
drF (r)e−ik·r =

a−k,↓ak,↑ . We already saw the physical significance of this quantity in evaluating the ex-

pectation value of the interaction term in Eq. (1.30): F (r) behaves as the two-particle

wave function. As we will see later, F (r) still behaves as the pair wave function of the

Cooper pairs even when we go beyond the BCS theory, and it is essential quantity in the

superconducting phase.

At finite temperature temperature, the expression of Fk is modified into

Fk = ukvk tanh

(
βEk

2

)
=

∆k

2Ek

tanh

(
βEk

2

)
, (1.89)
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so that its spacial dependence is given as

F (r) =
∑
k

∆k

2Ek

tanh

(
βEk

2

)
exp(ik · r). (1.90)

In the case of the s-wave pairing, ∆k and Ek are independent of the direction k̂. Therefore,

we can perform the integration over the angle:∑
k

exp(ik · r) = N(0)

∫
dεk

∫
dΩk

4π
exp(ik · r) = N(0)

∫
dεk

sin kr

kr
. (1.91)

Therefore, we find Fk for the s-wave pairing as

F (r) = N(0)

∫
dεk

sin kr

kr

∆k

2Ek

tanh

(
βEk

2

)
. (1.92)

To go further, therefore, let us assume as always the weak coupling limit. Then, we obtain

Tc � εF and we find kF ξ � 1, where ξ = ~vF/∆(0) is the healing length. This healing

length is of the order of the “pair radius” defined in Eq. (1.32).

One important remark on F (r) is that it is not normalized to unity, but rather one can

regard the integral of its squared as the number of Cooper pairs9:

NCooper ≡
∫

d3r|F (r)|2 =
∑
k

∆2
k

4E2
k

tanh2

(
βEk

2

)
. (1.93)

It is clear that the main contribution to this integral comes from a small energy region

|ε| ∼ ∆(T ) ∼ kBT . In this region, we can approximate ∆k(T ) by its value at the Fermi

surface, simply denoted by ∆(T ). In this approximation, the total number of Cooper

pairs is given by

NCooper = |∆(T )|2N(0)

∫
dεk
4E2

k

tanh2

(
βEk

2

)
. (1.94)

In the limit T → 0, this must be on the order of N∆(0)/εF , where N is the total number

of the fermions. One can obtain an important insight from this equation: for the old-

fashioned BCS superconductors, the number of Cooper pairs is much less than that of

the fermions. We can see this point easily by using ∆(0)/εF ∼ 10−4. As the temperature

is increased, the number of Cooper pairs decreases, and in the limit T → Tc, we find

N |∆(T )|2/TcεF .
Let us discuss general behaviors of the pair wave function F (r). What we can expect

is that

1. At short distance r � k−1
F , some of the above approximations break down, and

equations given above are not valid. Since the Coulomb repulsion between the

two electrons becomes dominant when the two electrons come close, the pair wave

function at short distance behaves as F (r) ∝ ϕ(r), where ϕ(r) is the relative wave

function of the two colliding electrons in the free space10 with E ∼ εF .
9Again, this physical meaning is a much more general property that goes beyond the BCS theory,

although the above equation does no longer hold (we will come back this point later).
10The modification to the Coulomb interaction could be important in some applications.
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2. In the intermediate region k−1
F � r � ~vF/∆(0), we can find F (r) ∝ ϕfree(r), where

ϕfree(r) is the wave function of two freely moving particles with zero center of mass

momentum at the Fermi energy.

3. At large distance r >> ~vF/∆(0), F (r) falls off exponentially F (r) ∝ exp (−r/ξ)
with ξ ∼ ~vF/∆(0). Here, the spatial extent of the pair wave function ξ can be

shown to be only weakly T -dependent [2].

The bottom lines are that

1. The radius of the Cooper pairs is always of the order of ~vF/∆(0), and is very huge

compared to the microscopic length scale. Even when we vary the temperature, the

size of the pairs does not change significantly, and this point remains to be true.

2. Even at T = 0, the number of Cooper pairs NCooper is far smaller than that of the

fermions N . As the temperature increase, NCooper decreases and finally it vanishes

at T = Tc.

1.4 Generalization of the BCS theory

Here let us consider the generalization of the previous discussion.

1. From the beginning, we have assumed the Sommerfeld model; thus we have ignored

the existence of the crystalline and the Coulomb interaction between the electrons.

The periodic potential can be taken into account by replacing the free wave functions

in the previous discussions with the Bloch waves

ψk,n(r) = uk,n(r)e
ikr. (1.95)

2. Next, let us take the Coulomb interaction into consideration. Here, we apply Lan-

dau’s Fermi liquid theory, and assume that the states of the interacting system can

be labeled with those of the non-interacting system under the adiabatic switching

of the interaction. Then, the net “polarization” of the states is given by∑
|k|

〈nk,σ〉. (1.96)

As long as the net polarization remains unchanged across the normal-superfluid

phase transition, the molecular field terms do not play any role. Therefore, the

only effect of the interaction is to replace the bare mass with the effective mass

m → m∗, leaving the gap equation intact. They do affect, however, the responses

to the external fields, just as in the normal state.
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3. The Coulomb interaction

VCoulomb(q) =
e2

εoq2
(1.97)

is long ranged, so that it is difficult to treat it straightforwardly. However, if we take

the screening effect into account, it becomes short ranged, and we can show that it

does not have significant effect. In fact, if we use the random-phase approximation

(RPA), the effective potential is modified due to the screening as

Veff(q) =
κo

1 + q2/q2TF

, (1.98)

where κo is the static bulk modulus of the non-interacting Fermi gas and qTF is the

Thomas-Fermi wave number. Since this is valid only in the static limit, ω should

be much smaller that vF q, where vF is the Fermi velocity. As long as we restrict

ourselves to the classical superconductors, this condition is usually satisfied and the

above expression can be used safely. If we assume that only the interaction for small

q’s is important, the long-range part of the Coulomb interaction merely shifts the

strength of the potential, and it has no effect on the gap equation. However, it does

affect the responses and the value of Tc.

4. Finally, let us consider the strong coupling case. Generally speaking, this kind of

interaction requires much more complicated treatments as Eliashberg has pointed

out (see Sec. 4.1.1). However, it provides only fairly small corrections to the naive

BCS theory. In fact, the ratio ∆(0)/kBTc can be 2.4 in Hg, and Pb at the largest,

while it is about 1.76 in the BCS theory.
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[2] Question from a student: We have defined the pair radius by the effective radius of the

pair wave function F (r). Also we know that there is another length scale called the

Ginzburg–Landau healing length, which diverges as T → Tc. What is the difference

between these two?

Answer: Thank you. A good question. What we talk about here is effectively the

radius of the Cooper pair. So you may think it is the radius of the effective molecule

of the Cooper pair, described in their relative coordinate. On the other hand, the

Ginzburg–Landau healing length is, crudely speaking, the length which characterizes

the behavior of the pair wave function in the bulk. If I consider the pair wave function

around the bulk boundary, the pair wave function goes to zero at the wall. When

we discuss the Ginzburg–Landau healing length, we are talking about the center of

mass coordinate. Suppose that the pair wave functions go to zero at the wall, then

it must have an exponential behavior. How long does it take to? The answer is the

Ginzburg–Landau healing length.

Another possible interpretation of the Ginzburg–Landau healing length is that it

is the length over which the order parameter has to distort such that the bending

energy is equal to the bulk condensation energy. According to this criterion, it is not

surprising, although not obvious, that the Ginzburg–Landau healing length tends to

infinity in the limit T → Tc.

27

《講義ノート》



Lec. 2 Superfluid 3He: basic

description

In this and next sections, we briefly review the 3He system. First, we deal with a normal

phase of 3He by the famous Landau Fermi liquid theory. Next, we describe the theory

of superfluid 3He, where, unlike the simple BCS theory presented in the previous section,

the anisotropy becomes important. Finally, the Ginzburg–Landau theory is formulated

for both the singlet and triplet superfluids.

2.1 Introduction

The liquid 3He has become available since the 1950s. Since it does not exist in nature,

most of 3He people actually use is produced from tritium through the reaction1 (3H→
3He + e + ν̄). 3He is an inert atom having the stable electronic state (1s)2S0 with a huge

excitation energy. Therefore, we can regard it as a point particle with a (nuclear) spin

1/2, obeying the Fermi statistics just as an electron in metals.

The interaction potential between 3He atoms is showed in Fig. 2.1. At short distance,

it has a “hard-core” repulsive region, originating from the Pauli principle between the

electrons. At large distance, on the other hand, the van der Waals interaction makes the

potential attractive.

For T . 100 mK, the liquid 3He behaves much like a textbook normal metal. For

example, the specific heat CV , Pauli spin susceptibility χ, viscosity η, spin diffusion

constant DS, and thermal conductivity κ behave as

CV ∝ T, χ = const., η,DS ∝ T−2, κ ∝ T−1. (2.1)

It turns out, however, that the inter-atomic interaction is rather strong. For example,

the spin susceptibility χ is 20 times larger than that for the ideal Fermi gas. How can

we justify the above seemingly non-interacting behavior in the presence of such a strong

interaction?

1Recently, there is a shortage of 3He in order to use it in neutron detectors, and its price is growing.
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r

“hard-core” repulsion

van der Waals attraction

Fig. 2.1. The interaction potential between 3He atoms.

2.2 Landau Fermi liquid theory

A very nice explanation of the normal liquid 3He for T . 100 mK was given by the

Landau Fermi Liquid theory. This theory is based on the following qualitative assumption

about the behavior of the system: we turn on the interaction adiabatically to the free

Fermi gas, and assume that the ground state and all low-energy excited states of the non-

interacting system evolve continuously into those of the interacting system. Obviously,

we exclude the possibility of any phase transitions in the above adiabatic process, such

as the normal liquid-superconductivity phase transition, the disorder-ferromagnetic phase

transition and the liquid-crystal phase transition.

The low-energy excited states are labeled by specifying the difference in the occupation

number δn(pσ) of the state with the momentum p and the spin σ measured from the

ground state. As long as the above assumption holds, we are able to do this even if the

interaction is pretty strong. The difference δn(pσ) can only take the following values (pF :

the Fermi momentum): {
δn(pσ) = 0 or − 1 (|p| < pF ),

δn(pσ) = 0 or 1 (|p| > pF ).
(2.2)

The energy E of the whole system can be expanded as

E = E0 +
∑
pσ

ε(pσ)δn(pσ) +
1

2

∑
pp′σσ′

f(pp′σσ′)δn(pσ)δn(p′σ′), (2.3)

where E0 is the ground state energy of the interacting system. We defined ε(pσ) and

f(pp′σσ′) as the coefficients in this expansion, and f is called the Landau interaction

function.

Now, we make use of the symmetry of the system to restrict the general form of the

coefficients. First of all, ε(pσ) must be spin-independent and isotropic; i.e., ε(pσ) = ε(|p|).
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Since we are interested in the low-energy excitation, we expand it as

ε(pσ) = ε(|p|) ' ε(pF ) + vF (|p| − pF ). (2.4)

The effective mass m∗ and the Fermi velocity vF are defined as

m∗ ≡ pF
vF
, vF ≡

(
dε

dp

)
p=pF

. (2.5)

From the symmetry argument, we can also see that f(pp′σσ′) is a function of |p|, |p′|,
p · p′ and σ · σ′. Hence, it can be expanded in terms of the Legendre polynomials P` as

f(pp′σσ′) '
∑
`

(f s
` + fa

` σ · σ′)P` (p̂ · p̂′) . (2.6)

Since the coefficients f
(s,a)
` have the dimension of (energy) × (volume)−1, it is convenient

to define dimensionless quantities

F s
` ≡ Ω

dn

dε
f s
` , F a

` ≡ Ω
dn

dε
fa
` , (2.7)

where Ω is the total volume of the system. For the liquid 3He, the values of these param-

eters are 
m∗/m ∼ 3-6,

F s
0 ∼ 10-100,

F s
` ∼ 1 (` 6= 0),

F a
` ∼ 1.

(2.8)

The Landau Fermi liquid theory may be very informally summarized as follows:

• Instead of real particles with the bare mass m, we deal with “quasi-particles” with

their effective mass m?.

• The system is subject to the molecular fields which are proportional to F s
` and

F a
` and generated by the polarizations of the system (see below).

Molecular fields

Now, we review the molecular field theory in order to examine the spin response. Using

Eq. (2.7), we rewrite Eq. (2.6) as

f(pp′σσ′) =

(
dn

dε

)−1

Ω−1
∑
l

(F s
l + F a

l σ · σ′)P`(p̂ · p̂′). (2.9)

If F a
0 is much larger than the other terms, we keep only this term in Eq. (2.3):

E =
1

2
Ω−1

(
dn

dε

)−1

F a
0

∑
pp′σσ′

σ · σ′δn(pσ)δn(p′σ′). (2.10)
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Since the total spin S =
∑

pσ σδn(pσ) is conserved, Eq. (2.10) is reduced to

E =
1

2
Ω−1

(
dn

dε

)−1

F a
0S · S. (2.11)

This expression is the same as the energy of the free Fermi gas with total spin S in the

molecular field

Hmol = −
(
dn

dε

)−1

F a
0S. (2.12)

Since we know the spin response of the ideal Fermi gas to an external field Hext(kω),

we obtain 
S(kω) = χsp

0 (kω)Htot(kω),

Htot(kω) = Hext(kω) +Hmol(kω),

Hmol(kω) = −
(
dn

dε

)−1

F a
0S(kω),

(2.13)

where χsp
0 (kω) is the spin response function of the noninteracting Fermi gas with the

effective mass m∗. These relations are generalizations of the very familiar mean field

theory of ferromagnetism.

We can easily derive the true spin response function

χtrue(qω) =
χsp
0 (qω)

1 + (dn/dε)−1 F a
0 χ

sp
0 (qω)

. (2.14)

By substituting χsp
0 =

dn

dε
into Eq. (2.14), we immediately obtain the static spin suscep-

tibility

χ =
dn/dε

1 + F a
0

. (2.15)

This formula is exactly the same as the one in the Landau Fermi liquid theory. Here, we

have derived it based on the molecular field theory and our knowledge on the ideal Fermi

gas.

2.3 Effects of (spin) molecular field in 3He

2.3.1 Enhanced low-energy spin fluctuations

The left figure of Fig. 2.2 shows the frequency-dependence of the χsp
0 of the free Fermi

gas, while the right figure is χsp
true corresponding to the Fermi liquid. Their relation is

described in Eq. (2.14) with dimensionless parameter F a
0 ∼ −0.7. We notice that there is

a peak for the Fermi liquid. Although this peak does not resemble the delta-function and

thus does not represent a real propagating excitation, we can think of this peak as a sort

of an elementary excitation, so-called “paramagnon”. The strong peak at low frequency

suggests that the elementary excitation is long-lived. Thus, the excitation is also referred

to as the “persistent spin fluctuation”.
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“paramagnon” 

Fig. 2.2. The imaginary part of the spin susceptibility χsp
0 .

2.3.2 Coupling of atomic spins through the exchange of virtual

paramagnons

In metals, the effective electron-electron interaction arises from the exchange of virtual

phonons. This is illustrated schematically in the left figure of Fig. 2.3. An electron

attracts positive ions on the way and other electrons feel these positive charges. Hence,

the effective electron-electron interaction is attractive.

The effective interaction between 3He atoms due to spin fluctuations is illustrated

schematically in the right figure of Fig. 2.3. In this case, virtual paramagnons medi-

ate the attractive interaction between 3He atoms, just as phonons do in metals. There

are, however, several important differences between paramagnons and phonons. For ex-

ample, the interaction due to the exchange of paramagnons is spin-dependent. In the

limit q, ω → 0, the interaction induced by the virtual paramagnon is always attractive in

the spin-triplet state, while it is repulsive in the spin-singlet state.

2.3.3 Pairing interaction in liquid 3He

Let us examine the possibility of forming Cooper pairs in the 3He system. To this

end, let us consider the interactions between 3He atoms. The bare atom-atom potential

shown in Fig. 2.12 has a strong hard core repulsion at short distance, much stronger

2The attractive part of the potential has the maximum around r ∼ r0, which we can assume to be of
the order of the radius of the Cooper pairs. On the other hand, the Cooper pairs must be formed from
states near the Fermi surface, k ∼ kF . Therefore, we infer the following relation

` ∼ kF r0 (` = 1, 2, or 3), (2.16)

where ` is the angular momentum.
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Metals 3He
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Fig. 2.3. The mechanism to induce the interaction in the liquid 3He is analogous to that

of metals.

than the Coulomb repulsion for electrons. Due to this strong repulsion, the Cooper

pairs with zero angular momentum are disfavored in 3He. Furthermore, the effective

interaction originated from the spin-fluctuation exchange, discussed above, is attractive

for the spin-triplet case and repulsive for the spin-singlet case. Recalling that the Pauli

principle constrains that states with even (odd) angular momentum ` must be in spin-

singlet (triplet) state, we can expect, all in all, that the ` = 1 or possibly ` = 3 pairing

with S = 1 may be favored3. Even before the experimental discovery of 3He, people

discussed the possibility of ` = 1: p-wave state. Now it is clear that we have to generalize

the BCS theory to the ` 6= 0 pairing.

2.4 Anisotropic spin-singlet pairing (for orientation

only)

We begin with the easiest anisotropic pairing; that is, the ` = 2 spin-singlet pairing. Our

strategy here is basically using the usual BCS theory and making necessary modifications

to describe the anisotropic pairing. Let us assume the BCS ansatz similar to Eq. (1.9),

ΨN =

(∑
k

ckα
†
k↑α

†
−k↓

)N/2

|vac〉 . (2.17)

Note that α†
kσ here creates quasi-particles , not bare particles, since there is a strong

inter-atomic interaction. We have relations similar to Eqs. (1.57) and (1.69),

Fk = ∆k/2Ek, (2.18)

∆k = −
∑
k

Vkk′
∆k′

2Ek′
tanh(Ek′/2kBT ). (2.19)

The pair wave function Fk and the gap function ∆k now depend on both the direction

and the magnitude of the momentum k. The interaction Vkk′ is a nontrivial function of
3The ` = 2 pairing was considered in the original theory [1].
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k−k′, and it can have a complicated form under the constraint that it must be invariant

under the spatial rotation. Since we are only interested in behaviors of the system close

to the Fermi surface and we can set |k|, |k′| ∼ kF , Vkk′ can always be expanded as

Vkk′ =
∑
`

V`P`(k̂ · k̂′), (2.20)

where P`(k̂ · k̂′) are the Legendre polynomials. If V` is negative for some `0 and if |V`0 |
is appreciably larger than other V`’s, we keep only the `0 component, ignoring all other

components. Now let us assume this is the case.

We can also decompose ∆k into spherical harmonics Y`m(θk, φk) as

∆k =
∑
m

∆`0mY`0m(θk, φk). (2.21)

To find coefficient ∆`0m, we consider the free energy and minimize it. Note that the

optimal solution ∆`0m can be a nontrivial complex number, which in turn means a non-

zero angular momentum of the paired state. This is because, as we will see later, if the

gap function ∆k is complex, the pair wave function Fk is also complex. More generally,

∆`0m 6= 0 for `0 6= 0 implies that some physical quantities, such as the density of states,

would be anisotropic.

2.5 Digression: macroscopic angular momentum prob-

lem

In this section, let us consider one of the long-standing questions about the anisotropic

pairing: can a superfluid state with an anisotropic coupling have a macroscopic angular

momentum?

We take the BCS wave function Eq. (2.17) with the following coefficients:

ck = f(|k|, θk)exp(2iφk) (d-wave). (2.22)

(a) (b)

Fig. 2.4. (a) The definitions of θk and φk. (b) The BCS ground state constructed from

the Fermi sea, not from the Fock vacuum.
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See Fig. 2.4 (a) for the definition of θk and φk. With this wavefunction, we can calculate

the commutator of the operator Ω̂† defined in Eq. (1.8) and the generator of rotations

around the `-axis L̂z as

[L̂z, Ω̂
†] = −i~

∂ck
∂φk

α†
k↑ · α

†
−k↓ = 2~Ω̂†. (2.23)

Therefore, it turns out that

L̂zΨN = N~ΨN . (2.24)

This result is somewhat counterintuitive because it implies that this d-wave superfluid

state has a macroscopic angular momentum at any temperature below Tc! Why did we

get this seemingly unphysical result? Obviously, this is because we started from the Fock

vacuum |0〉. All pairs of electrons below the Fermi sea gave finite contributions to the

total angular momentum.

For comparison, let us change our starting point from the Fock vacuum |0〉 to the Fermi

sea |FS〉, the ground state of the non-interacting system. The BCS ground state can be

constructed by moving electron pairs from inside of the Fermi surface to outside of it, as

shown in Fig. 2.4 (b). The corresponding formula would be

Ψ
(m)
N ≡ (Ω̂+)N+(Ω̂−)N−|FS〉 (N+ −N− = 2Nm), (2.25)

where Ω̂± is defined as

Ω̂+ =
∑
k>kF

ckα
†
kα

†
−k, Ω̂− =

∑
k<kF

c−1
k α−kαk. (2.26)

We can easily convince ourselves that the state Ψ
(m)
N is an eigenstate of L̂z with the

eigenvalue Nm~. If we use the result Nm/N = ∆/εF obtained in Lec. 1, we see that the

eigenvalue is Lz ∼ N~(∆/εF ) � N~.
We therefore have these two different conclusions depending on the starting points. It

turns out that these two ground states give the same prediction for almost all physical

properties, except for the angular momentum as we have seen above. After all, which is the

true value of the angular momentum of the superfluid 3He under a specific geometry and

a boundary condition? This problem is not fully resolved yet, and remains controversial

even today.

2.6 Spin-triplet pairing

In this section, we will discuss the spin-triplet pairing in detail.
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Fig. 2.5. The response to the external field.

2.6.1 Equal spin pairing (ESP) state

Let us start off with the simplest case, the equal spin pairing (ESP). With a suitable

choice of the spin axes, the ESP state is characterized by the wavefunction

ΨN =
∑
k

(
ck↑α

†
k↑α

†
−k↑ + c−k↓α

†
k↓α

†
−k↓

)N/2

|vac〉 . (2.27)

Although the Pauli principle implies ckσ = −c−kσ, there is no particular relation between

ck↑ and ck↓ in general. Note that the above state is not equivalent to

Ψ
(F )
N =

(∑
k

ck↑α
†
k↑α

†
−k↑

)N/4(∑
k

c−k↓α
†
k↓α

†
−k↓

)N/4

|vac〉 . (2.28)

Equation (2.27) is a coherent superposition of ↑↑ and ↓↓ pairs, while Eq. (2.28) represents

a Fock state. For a spin-conserving potential, the gap equation for σ =↑↑, ↓↓ decouples:

∆kσ = −
∑
k′

Vkk′
∆k′σ

2Ek′σ
tanh

1

2
βεk′σ. (2.29)

One important remark for the ESP state is the spin susceptibility. Let us imagine that

we prepare an ESP state with a certain pairing axis and apply a small magnetic field

along the axis. The reactions of ↑↑ pairs and ↓↓ pairs to the magnetic field are completely

independent, and thus the magnetic field does not affect the Cooper-pair formation. The

spin susceptibility for the ESP state χESP is therefore approximately equal to that of the

normal state χn (Fig. 2.5).

2.6.2 General case

We consider the most general spin-triplet pairing state,

ΨN =

(∑
kαβ

ckαβα
†
kαα

†
−kβ

)N/2

|vac〉 . (2.30)
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The coefficients ckαβ must be an odd function of k and symmetric with respect to α and

β:

ckαβ = ckβα = −c−kαβ. (2.31)

For fixed k, we can always choose the spin axis which makes ckαβ diagonal; i.e., ck↑↓ =

ck↓↑ = 0. This spin axis may not be unique, and also can depend on k. What is worse,

even if we use this axis, we cannot proceed much further. The gap equation and other

formulas take too complicated forms in general.

These formulas are, however, enormously simplified if we restrict ourselves to the unitary

case, where |ckσ|2 is independent of σ. In this case, the pair wave function would be given

by

Fk,αβ =
∆k,αβ

2Ek

, (2.32)

where we have defined

Ek ≡
(
ε2k + |∆k|2

)1/2
, |∆k|2 ≡

∑
β

|∆k,αβ|2. (2.33)

We can check that |∆k|2 and hence Ek are independent of α.

If the potential is spin-independent, then the expectation value of the interactions term

is reduced to

〈V̂ 〉 =
∑
kk′αβ

Vkk′FkαβFk′βα. (2.34)

As a consequence, the gap equation is decoupled and does not mix the spins:

∆kαβ = −
∑
k′

Vkk′
∆k′αβ

2Ek′
. (2.35)

2.6.3 d-vector (unitary states)

Let us introduce the d-vector, which is very useful for describing the unitary state. In

an arbitrary reference frame, the d-vector is defined by

di(k) ≡ −i
∑
αβ

(σ2σi)βαFαβ(k), (2.36)

where σi are Pauli matrices. For any given k, we can choose the spin axis in such a

way that F↑↓(k) = F↓↑(k) = 0. The definition of the unitary state further imposes the

restriction,

|F↑↑(k)| = |F↓↓(k)| ≡ |Fk|. (2.37)

In this case, Fk can be written as

Fk = (d1(k) + id2(k))/2, d3(k) = 0. (2.38)
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Therefore, d is a real vector up to an overall phase (i.e., d × d∗ = 0). In the xy-plane,

the angle of the d-vector with y-axis is
1

2
arg(F↑↑/F↓↓), while the magnitude |d| is equal

to |Fk|.
In other words, the two-particle state of spin-

1

2
particles of this form is given by

S = 1, S · d = 0. (2.39)

Even in a more general reference frame, the unitary phase has d(k) such that d(k) ×
d∗(k) = 0 for each k. In the BCS case d(k) depends only on the direction n̂ = k/|k| ≈
k/kF , not on the magnitude |k|. If the direction of d(k) is independent of k, it represents

the ESP state.

2.7 Ginzburg–Landau theory

2.7.1 Spin-singlet case

The Ginzburg–Landau theory was developed in the context of the old-fashioned super-

conductors. Actually, this theory was developed before the microscopic works of the BCS

theory were done. We consider a general BCS state (not necessarily the ground state) in

a uniform space. Let us define the order parameter of the system based on the pair wave

function Fk ≡ 〈a†k↑a
†
−k↓〉 = ukvk:

Ψ(n̂) ≡
∑
|k|

Fk. (2.40)

The pairing potential energy 〈V̂ 〉 is given by

〈V̂ 〉 =
∑
kk′

Vkk′FkF
∗
k′ =

∫
dΩ

4π

∫
dΩ′

4π
V (n̂, n̂′)Ψ(n̂)Ψ∗(n̂′). (2.41)

We confine ourselves to the case where Ψ(n̂) contains only the ` = `0 component of the

spherical harmonics Y`m(n̂) which corresponds to the most negative component V`0 of

V (n̂, n̂′) (see Eq. (2.20) and the discussion below). Then 〈V̂ 〉 can be rewritten as

〈V̂ 〉 = V`0

∫
dΩ

4π
|Ψ(n̂)|2. (2.42)

Next we consider the kinetic energy 〈K̂ − µN̂〉 =
∑

kσ εk〈nkσ〉, and the entropy −TS.
It is clear that 〈K̂−µN̂〉−TS is a sum of contributions f{Ψ(n̂)} from each point on the

Fermi surface:

〈K̂ − µN̂〉 − TS =

∫
dΩ

4π
f{Ψ(n̂)}. (2.43)
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From symmetry considerations4, the function f{Ψ(n̂)} can be expanded as

f{Ψ(n̂)} = f{|Ψ(n̂)|2} = const. + α(T )|Ψ(n̂)|2 + 1

2
β(T )|Ψ(n̂)|4 +O(|Ψ(n̂)|6). (2.44)

Hence the total free energy F ≡ 〈K̂ − µN̂ + V̂ 〉 − TS is given by

F = const. + (V` + α(T ))

∫
dΩ

4π
|Ψ(n̂)|2 + 1

2
β(T )

∫
dΩ

4π
|Ψ(n̂)|4 +O(|Ψ(n̂)|6). (2.45)

The explicit forms of α(T ) and β(T ) are not necessary for our purpose. We will drop the

constant term below.

If the coefficient V` + α(T ) is positive, the normal state Ψ(n̂) = 0 minimizes the free

energy. In contrast, if the coefficient is negative, the order parameter Ψ(n̂) has a finite

value. Therefore, the critical point Tc can be determined from the equation

V` + α(T ) = 0. (2.46)

By expanding V` + α(T ) around T = Tc as α′(Tc)(Tc − T ) (α′(Tc) < 0) and β(T ) as

β ≡ β(Tc), we have

F = α′(Tc)(Tc − T )

∫
dΩ

4π
|Ψ(n̂)|2 + 1

2
β

∫
dΩ

4π
|Ψ(n̂)|4 +O(|Ψ(n̂)|6). (2.47)

Note that V` has been dropped out of the problem!

For the s-wave pairing, since Ψ(n̂) becomes a constant Ψ, we get the standard Ginzburg–

Landau expression,

F = α′(Tc)(Tc − T )|Ψ|2 + 1

2
β|Ψ|4 +O(|Ψ|6). (2.48)

Minimizing this with respect to Ψ gives F = −(α′(Tc)
2/2β)(Tc − T )2, which agrees with

the BCS theory.

For the ` 6= 0 pairing, the free energy F depends on the specific form of Ψ(n̂). By

minimizing the free energy with respect to the overall magnitude of Ψ, we find

F = −(α′2/2β)
(
|Ψ|2

)2
/|Ψ|4, (2.49)

where the average X of a function X(n̂) is defined as X ≡
∫

dΩ
4π
X(n̂). Hence, the lowest

free energy is achieved by minimizing the anisotropy of |Ψ|2 over the Fermi surface.

2.7.2 Spin-triplet case

To examine the spin-triplet case, it is convenient to define

d(n̂) ≡
∑
|k|

dk. (2.50)

4The free energy should be invariant under the global gauge transformation Ψ → exp(iα)Ψ, which is
a natural consequence of the assumption that Ψ has the meaning of a Schrödinger-like wave function.
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The potential energy and the kinetic energy become

〈V̂ 〉 =
∫

dΩ

4π

∫
dΩ′

4π
V (n̂, n̂′)d(n̂) · d∗(n̂′) → V`0

∫
dΩ

4π
|d(n̂)|2, (2.51)

〈K̂ − µN̂〉 − TS =

∫
dΩ

4π
f{|d(n̂)|2}. (2.52)

Therefore the free energy F is

F = α′(Tc)(Tc − T )

∫
dΩ

4π
|d(n̂)|2 + 1

2
β

∫
dΩ

4π
|d(n̂)|4 +O(|d(n̂)|6). (2.53)

As we can see, |d(n̂)|2 in the spin-triplet case plays the role of |Ψ(n̂)|2 in the spin-singlet

case. Hence, the lowest free energy is obtained by minimizing the anisotropy of |d(n̂)|2

over the Fermi surface.
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Lec. 3 Superfluid 3He (continued)

In this section, we focus specifically on superfluid 3He and some interesting topics.

3.1 Experimental phases of liquid 3He

Figure 3.1 is the phase diagram of 3He at the temperature below about 3 mK. Solid
3He is also interesting, but in this lecture, we focus on the liquid phases of 3He. As we

saw in the previous section, at higher temperature (but below 100 mK), this liquid 3He

behaves very much like a pure textbook Landau Fermi liquid. The Landau Fermi liquid

is basically very much like a free degenerated Fermi gas with two differences: (a) The real

particle excitation in the free Fermi gas becomes the quasiparticle excitation in the Fermi

liquid, and the effective mass m∗ of the quasiparticle is different from an atomic mass m

due to the inter-atomic interaction. (b) The system is subject to a set of molecular fields

which generate various kinds of macroscopic polarizations.

So far, the liquid 3He is known to have at least three new phases. Most of the phase

diagram is occupied by the B phase, and the A phase exists between the B and the normal

phases. The last one is the A1 phase, which only appears in a strong magnetic field. The

phase transitions between the normal phase and the A phase, or the normal phase and the

B phase are second-order phase transitions. On the other hand, the transition between

1 32

SOLID 
3He

A

N

B

A1 (in )

green curve: 2nd-order transition

red curve: 1st-order transition

broken curves: curves for 

Fig. 3.1. Phase diagram of 3He (See [1, 2]).
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the A and B phases is a first-order phase transition, and this is typically accompanied by

a certain amount of supercooling1.

In the above paragraph, I avoid referring to the superfluid, because the concept of su-

perfluid 3He was originally based more on theoretical presumptions than on experimental

phenomenologies. In fact, it is not easy to show that these phases are really superfluid in

experiments2, but here, we use a usual convention in referring to the phases of superfluid
3He.

3.2 Nature of the order parameter of different phases

It is believed that we are fairly confident in identifying the order parameters of pair wave

functions of different phases of 3He. We can identify the order parameters by susceptibility,

nuclear magnetic resonance (NMR) and also indirect arguments based on stability.

3.2.1 A phase

First of all, the A phase (spin-triplet) is believed to be characterized by the d-vector.

The d-vector depends on the position on the Fermi surface, which we specify by k̂, and

the d-vector can written down in the form

d(k̂) = d̂f(k̂), f(k̂) = sin θk̂e
iφ

k̂ , (3.1)

where d̂ is a characteristic spin vector, which is independent of the position on the Fermi

surface, ˆ̀ is a characteristic vector describing the orbital space, and θk̂ and φk̂ are the

polar angles of k̂ with respect to ˆ̀ (see Fig. 3.2). This phase is usually known as the

Anderson–Brinkman–Morel (ABM) state.

Fig. 3.2. Angles θk̂ and φk̂

are relative to ˆ̀.

In the A phase, the pair wave function can be broken

up into a spin wave function χ(σ) and a spatial wave

function F (r):

F (r, σ) = F (r)χ(σ). (3.2)

Here, in the ABM state, χ(σ) is the state which satisfies

S = 1 and Sz = 0 along d̂, and F (r) is the state with the

apparent angular momentum ~ along ˆ̀. The gap function

in the ABM state is explicitly given by the formula here:

∆k̂ = ∆0sinθk̂exp(iφk̂). (3.3)

1There are some very interesting problems associated with the supercooling, but we do not discuss in
details here. See Ref. [2] for more details.

2The healing length of 3He is at least of the order of a pair radius and much larger than that of 4He.
Therefore, it is much easier to destroy the superfluidity in 3He than in 4He. This is the main reason why
3He experiments is difficult.
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It is important that ∆k̂ is complex, and hence it has an angular momentum. Furthermore,

the gap function has nodes at k̂ = ± ˆ̀ (i.e., θk = 0, π), which suggests the low-energy

quasiparticles are more easily excited at low temperature compared with the fully gapped

state.

The fact that the vector d̂ is independent of k̂ indicates the ABM state being the Equal-

Spin-Pairing (ESP) state, which has a susceptibility equal to the normal state value. Thus,

χ is not reduced so long as the magnetic field is applied perpendicular to d̂.

Alternative representation of the ABM state

We can use an alternative notation of the ABM state, in which the many-body wave

function has the following form

ΨN = const.

[∑
k

ck

(
α†
k↑α

†
−k↑ + exp(iχd)α

†
k↓α

†
−k↓

)]N/2

|vac〉 , (3.4)

where χd = −2ϕd, and ϕd is the angle of d in the xy-plane measured clockwise from

the positive y-axis. This wave function brings out its ESP nature explicitly. There is

a definite phase between the two up pairs and the two down pairs: the ESP state is a

coherent superposition of them. Here, ck is the orbital part of the wave function

ck = f(|k|)sinθkexp(iφk). (3.5)

3.2.2 A1 phase

Let us consider another phase, the A1 phase, which only appears under a strong mag-

netic field. If we take the coordinate axis such that the magnetic field is applied in the

up (↑) direction, the many-body wave function of the A1 phase is expressed as

ΨN = const.

(∑
k

ckα
†
k↑α

†
−k↑

)N/4

× (↓ Fermi Sea). (3.6)

Crudely speaking, in the A1 phase, a pair of up spins form a Cooper pair, while down

spins just behave like in the normal phase.

It is tempting to think that in the phase of this type, the spins are automatically

polarized, but that is not true. Because this expression does not mean creating more

particles in one spin direction ↑ than the normal phase, they are just reorganized to make

pairs in the real space. Therefore in this case, up spins have a gap on the Fermi surface

which is the same as in the A phase, but down spins have no gap.
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3.2.3 B phase: naive identification

The naive identification of the B phase is first proposed by R. Balian and N. R.

Werthamer3 [4] in 1963, and this state is called the BW state. In the d-vector nota-

tion, the state is described by k̂:

d(k̂) ∝ k̂. (3.7)

In other words, the spin state is S = 1, Sz = 0 along k̂. It turns out that the orbital

angular momentum satisfies L̂z = 0. Thus, in the BW state, we can show that the spin

vector S of the Cooper pairs is always directed oppositely to L:

L+ S ≡ J = 0. (3.8)

In the language of molecular physics, the BW state is 3P0 state. In particular, by the

Wigner–Eckart theorem, any anisotropy in physical properties must be determined by the

value of J . In this case J = 0, which means all properties have to be isotropic, and the

gap function ∆ satisfies

|∆(n)| ∝ |d(n)| = const. (3.9)

This means that ∆ has no nodes (as it does not in the ABM state), and the number

of quasiparticles is exponentially small (∝ exp(−∆/T )) at low temperature. As to spin

susceptibility χ, for any particular direction of the field, some pairs are formed in the

Sz = 0 state and these pairs will not respond to the field. Therefore, χ is reduced from

the normal-state value.

Combined with the result on the A phase, this has an important consequence that a

magnetic field always advantages the A phase over the B phase.

3.3 Why A phase?

The very important question which arose soon after the phase diagram was discovered

experimentally, is “Why should the A phase be there?”. To see this problem, remember

the Ginzburg–Landau theory discussed in the previous section. For the pairing with

given `, it was shown that the free energy is minimized by the choice which minimizes the

anisotropy of |d(n̂)|2 over the Fermi surface. We can define this anisotropy by

K ≡ |d|4(
|d|2
)2 , (3.10)

and all we have to do is to minimize K.

Now we can estimate K by using the results of the gap function of each state, and see:

3Actually, there was an earlier discussion of this phase by Yu. Vdovin [3], but this work was not
widely known outside the former Soviet Union.
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For the ABM state, |d(n̂)|2 ∝ sin2θ ⇒ KABM = 8/15
(2/3)2

= 6/5.

For the BW state, |d(n̂)|2 = const. ⇒ KBW = 1.

Thus, in the generalized BCS theory, we always have FBW < FABM!

This was the major problem when superfluid phases of 3He were discovered experimen-

tally, and some approaches were developed to examine this problem. The first approach

is to generalize Ginzburg–Landau approach, and the second one is to consider spin fluc-

tuation feedback. In the next two subsections, I will introduce these two approaches.

3.3.1 Generalized Ginzburg–Landau approach

In this approach, our discussion is only based on the symmetry of the states, and there

is no particular assumption on energetics. Since d(n̂) is a vector in spin space, and the

orbital dependence is assumed to be p-wave, we can always write the quantities dα as

dα(n̂) ≡
∑
i

diαn̂i, (3.11)

where i is a spin subscript, and α is an orbital one. This means that all p-wave triplet

states are completely parameterized by 9 complex quantities diα, and the order parameter

is defined in the 18-dimensional space.

Here, let us follow the original argument by Ginzburg and Landau, and assume the

expansion:

F (T : {diα}) = α0(T − Tc) ·O(|d|2) + β(T ) ·O(|d|4) + ..., (3.12)

where α0 > 0 is a constant. Then, we consider some basic symmetries: invariance under

global gauge transformations, and under rotations of the spin and orbital coordinate

system separately. These symmetry conditions constrain the term of O(|d|2) to have the

unique form

O(|d|2) ∝
∑
iα

|diα|2, (3.13)

which is
∫

dΩ
4π
|d(n̂)|2, just as in the BCS theory.

For the O(|d|4) term, on the other hand, there are five terms which are invariant under

the above symmetries. For example,

I1 =

∣∣∣∣∣∑
iα

d2iα

∣∣∣∣∣
2

, (3.14)

I2 =
∑
αβij

d∗βid
∗
βjdαidαj, etc. (3.15)

Here, note that I1 is different from I4 ≡ (
∑

iα |diα|2)
2
= 1. We can write down any fourth-

order invariants by the linear combinations of these five invariants4. Therefore in general,
4Readers interested in the other two invariants I3 and I5 may check them in Ref. [5].
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setting some coefficients βs, we obtain

O(|d|4) =
5∑

s=1

βsIs ≡ K4. (3.16)

Is’s are fourth-order invariants characteristic of particular kinds of states (e.g., the ABM

state, the BW state ...), but βs’s are parameters which depend on energetic assumptions

in general. Therefore we cannot determine βs a priori unlike the simple BCS case.

Next, we should tackle the problem of finding diα, which minimize the fourth-order free

energy K4 for given parameters βs and normalization conditions:∑
iα

|diα|2 ≡ |d|2 = 1. (3.17)

The problem is to find all possible states (all possible forms of diα) which can be minima

of free energy (i.e., minima of K4) for some choice of the βs under the above constraints.

This problem is solvable in principle, but is quite messy and nearly unsolvable in reality

without constraints. Therefore we restrict possible states to unitary states. Here, unitary

states mean that for every n̂, Sz = 0 is satisfied in some set of spin axes.

If we assume this, the problem becomes simple, and it is found that only four states

can be the extrema of free energy (for more details, see Ref. [5]):

1. The BW (“isotropic”) state: dαi =
1√
3
δαi

This state is already introduced. In the BW state, we have pairing in all possible

directions.

2. The 2D (“planar”) state: dαi =
1√
2
δαi(1− δiz)

This state is essentially very similar to the BW state because if the z-component

is removed from the BW state, it becomes the planar state. This state is an ESP

state, but is different from the ABM state.

3. The ABM (“axial”) state: dyx = −idzx =
1√
2
, all other dαi = 0

This state is already introduced.

4. The 1D (“polar”) state: dzz = 1, all other dαi = 0

This state is also an ESP state.

Remarkable Theorem

For the BCS values of β′s, the BW state turns out to be most stable. If the non-BCS

contributions to β are taken into account, however, other states may be more stable. In

fact, the polar state can be more stable than the BW state only if the non-BCS contribu-

tions to β′s are comparable to BCS ones. For the ABM state, its energy become smaller
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than that of the BW state for relatively small non-BCS contributions. Furthermore, we

can show that the 2D (planar) state can never be the absolute minimum of free energy

for any choice of β′s. Therefore, in general, the BW or the ABM states are most likely to

appear.

It is important to note that in the above analysis, both orbital subscripts α’s and spin

subscripts i’s always occur in pairs. Thus, I ′ss are invariant under spin and orbital rotation

separately, and the BW state, the ABM state, etc. represent classes of states transforming

into one another under these rotations.

3.3.2 Spin fluctuation feedback

In this subsection, we view the second approach which is much more based on physical

mechanism. This approach is proposed by Anderson and Brinkman in 1973 [6].

The basic physical idea of Anderson–Brinkman theory is shown in Fig. 3.3. In a stan-

dard superconductor, which is described by the BCS theory, the mechanism of the forma-

tion of Cooper pairs is an exchange of virtual bosons, or phonons between the electrons. In

the case of 3He, quasiparticles also exchange bosonic degree of freedom called “spin fluc-

tuation”, where additional quasiparticle and quasihole pairs are formed and the medium

becomes virtually polarized by the strong inter-atomic interaction. Thus, the mechanism

for the superfluidity sounds rather similar to the BCS one, but there is a critical difference.

Unlike the superconductor, in the case of 3He, the medium being polarized is precisely the

medium in which Cooper pairs are formed, and the superfluid phase transition modifies

the pairing interaction between quasiparticles. Therefore, the original force of the super-

fluidity, the spin fluctuation, is in turn modified in the presence of the superfluidity, and

in general, we must include this “spin-fluctuation feedback”. The amount of this feedback

effect depends on a particular kind of superfluid (the ABM state, the BW state, ...), and

it is, in fact, significant in discussing the ABM and the BW states.

The spin-fluctuation-induced interaction (See Sec. 2.3) is given by

V̂eff(qω) ≈ −(F a
0 )

2χsp(qω)σ
(1) · σ(2), (3.18)

where σ(1) and σ(2) are spin operators for each atom of the Cooper pairs. This interaction

is attractive in the spin-triplet state, and repulsive in the singlet state. The point is that

the spin susceptibility χsp(qω) is modified by pairing. To obtain quantitative results,

we need a microscopic complicated calculation [6], but we can easily obtain qualitative

understanding by assuming

δχsp(qω) ∝ δχ, (3.19)

where χ is a static spin susceptibility. Crudely speaking, we assume that the modification

of the spin susceptibility is similar to the static part. With this assumption, we can

immediately see that the BW state is disfavored. In fact, in the BW phase, the spin-

fluctuation-induced attraction V̂eff gets smaller since the susceptibility is reduced χ < χn.
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Lattice vibration,

insensitive to onset of electron pairing

Superconductor:

Liquid 3He:

Spin fluctuation of 3He system,

sensitive to onset of pairing

= 

Fig. 3.3. Schematic illustration of the Anderson–Brinkman theory.

In the ABM phase, for fixed d, δχ is actually anisotropic. In this case, we can write down

the modification δχ and potential as

δχij ≈ −f(T )didj, (3.20)

∆〈V̂eff〉 ≈ −δχij〈σ(1)
i σ

(2)
j 〉 ≈ +f(T )didj〈σ(1)

i σ
(2)
j 〉. (3.21)

If we take the axis of d in the z-direction, we find ∆〈Veff〉 ∝ d2z〈σ
(1)
z σ

(2)
z 〉. In the ABM

state, all Cooper pairs are in a state with S = 1, Sz = 0, so that the spins of the pairs are

in the z-direction are antiparallel and 〈σ(1)
z σ

(2)
z 〉 is strongly negative. Hence, in the ABM

state, the spin-fluctuation attraction is increased in the ABM state over the normal-state

value. If the spin-fluctuation feedback effect is strong enough, the ABM state may become

even more stable than the BW state.

3.4 NMR in the new phase

The first experiment of the superfluid 3He was the NMR experiments, which measure the

susceptibility and the resonance frequency. First, we consider the susceptibility (Fig. 3.4.).

In the normal phase and the A phase, χ is constant (we actually know now by experi-

mental results that there is a very small change for χ when we go into the A phase from
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NAB

Fig. 3.4. The behavior of the susceptibility.

the normal phase), but in the B phase χ discontinuously drops. These phenomena are

not particularly mysterious. The A phase could be an ESP state, which is composed of

only ↑↑, ↓↓ pairs. Thus, there is no reduction in χ. The B phase could be the singlet or

BW state, where ↑↓ pairs are formed for both cases, and χ is expected to be reduced.

Next we consider the resonance frequency (Fig. 3.5 (a)), which is much more puzzling

than the susceptibility. In the normal phase the resonance frequency ωres is

ωres = γHext, (3.22)

where γ is µn/~ (µn: the nuclear moment) and Hext is the external magnetic field. This is

a standard Larmor frequency expression. When we go into the A phase, the early NMR

experiments show that the resonance frequency shifts upward from the normal value

ω2
res = γ2H2

ext + ω2
0, (3.23)

which seems Pythagorean. This result is very well verified in other experiments. Through

the phase transition from the A phase to the B phase, the resonance frequency appears

to go back to the exactly same form as the normal state. By experiments

ω2
0(T ) ≈ A(1− T/TA),

A

(2π)2
≈ 5× 1010 Hz2. (3.24)

Thus we need H0(≡ ω0(T )/γ) ∼ 30 G (Fig. 3.5 (b)). However, the only spin-non-

conserving force in problem is the nuclear dipole-dipole interaction, and the maximum

associated field is less than 1 G even if the atoms approach very close! What develops the

extra field H0 which is perpendicular to the external field? Where does the effect come

from? Is this the first indication of a radical breakdown of quantum mechanics?

3.5 What can be inferred from the sum rules?

From a simple sum-rule argument, if a single sharp resonance is observed (as in the

experiments), then

ω2
res = γ2H2

ext + ω2
0, (3.25)
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( “Pythagorean” )

(a) (b)

Fig. 3.5. (a) The behavior of the resonance frequency. (b) The extra field H0.

ω2
0 = χ−1∂

2〈ĤD〉
∂θ2

, (3.26)

where ĤD is the nuclear dipole energy and θ is the angle of simultaneous rotation of all

spins (Fig. 3.6).

The second derivative of 〈ĤD〉 is expected to be

∂2〈ĤD〉
∂θ2

∼ 〈ĤD〉, (3.27)

which is shown from the tensorial structure of ĤD that
∑3

i=1 ∂
2〈ĤD〉/∂2θ2i = −〈ĤD〉

where θi is the i -th component of θ. This implies that the experimental value of ω2
0(T ) is

〈ĤD〉(T ) ∼ K

(
1− T

TA

)
, K ∼ 10−3 ergs/cm3. (3.28)

This is a very large value. Since the end-to-end configuration is favored over the side-by-

side one only by an energy

∆E ≤ µ0µ
2
n

r30
∼ 10−7 K � kBT, (3.29)

the “good” orientation is preferred to the “bad” one by (we consider kBT ∼ 10−3 K)

∆E/kBT ∼ 10−4. (3.30)

The real situation is actually worse than this, since because of the Fermi degeneracy the

thermal energy kBT should be replaced by kBTF ∼ 1 K, or ∆E/kBTF ∼ 10−7. Thus the

vacuum expectation value of the dipole energy is much too small.

3.6 Spontaneously broken spin-orbit symmetry

We consider here the spontaneously broken spin-orbit symmetry (SBSOS) in the liquid
3He by an analogy with the behavior of ferromagnets (Fig. 3.7). For the ferromagnetic
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Fig. 3.6. θ is the angle of simultaneous rotation of all spins.

case, in the normal phase, the direction of spin vector is completely random. However,

when we go into the ordered phase, all of the spin vectors become parallel,

〈S〉 6= 0. (3.31)

This phase transition affects the response to an external field significantly. To see this,

let us consider the Hamiltonian expressed with the two terms

Ĥ = Ĥ0 + Ĥz, (3.32)

where Ĥ0 is the exchange interaction between spins, and Ĥz is the Zeeman interaction

term

Ĥz = −µBHext

∑
i

Szi. (3.33)

While Ĥ0 is invariant under simultaneous rotation of all spins, the Zeeman term breaks

the spin-rotation symmetry. In the paramagnetic phase (T > Tc), the spins behave

independently. Thus the polarization value is approximately µBHext/kBT � 1, and the

expectation value of the second term in Eq. (3.32) becomes

〈Ĥz〉 ∼ N (µBHext)
2 /kBT, (3.34)

which is usually a very small value. In contrast, in the ferromagnetic phase (T < Tc), Ĥ0

forces all spins to lie in parallel. Thus the polarization value is approximately 1, and the

expectation value of the second term in Eq. (3.32) becomes

〈Ĥz〉 ∼ NµBHext. (3.35)

Next, we consider the liquid 3He. The Hamiltonian can be expressed as

Ĥ = Ĥ0 + ĤD, (3.36)

where Ĥ0 is invariant under relative rotation of spin and orbital coordinate systems, and

the dipolar-interaction ĤD is given by

ĤD = gD
∑
ij

(
σi · σj − 3σi · r̂ijσj · r̂ij(

r3ij/r
3
0

) )
. (3.37)
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Ferromagnet Liquid 3He

relative orbital angular momentum

total spin of pair

Normal

　  phase

Ordered

　  phase

spin

Fig. 3.7. SBSOS with an analogy with ferromagnets.

This term breaks the relative spin-orbit rotation symmetry.

In the normal phase (T > TA), the spins of the pairs behave independently. Therefore,

the polarization value is approximately gD/kBT � 1, and

〈ĤD〉 ∼ Ng2D/kBT. (3.38)

In the normal phase of the liquid 3He, the direction of spin vector and the orbital angular

momentum are completely random. There is no particular relationship between these

vectors.

In the ordered phase (T < TA), the directions of these vectors are still completely

random, but all pairs have the same relative angles

〈S〉 = 0, 〈L〉 = 0, (3.39)

〈L× S〉 6= 0. (3.40)
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Furthermore, all the Cooper pairs are in the same spin and orbital state. Therefore, Ĥ0

forces all pairs to behave similarly, and thus we find (as was found in Ref. [7])

〈ĤD〉 ∼ NgD ∼ 10−3 ergs/cm3. (3.41)

3.7 Microscopic spin dynamics (schematic)

We consider the two important basic variables, the total spin S and the orientation θ

of the spins of the Cooper pairs. By using hydrodynamic (Born-Oppenheimer) approxi-

mation, the Hamiltonian can be expressed as

Ĥ = Ĥ0(S) + ĤD(θ). (3.42)

The set of semiclassical equations of motion can then be written as follows:

dθ

dt
=
∂〈Ĥ0〉
∂S

= Hext − χ−1S, (3.43)

dS

dt
= S ×Hext −

∂〈ĤD〉
∂θ

. (3.44)

The last term of Eq. (3.44) expresses the dipole torque acting on the spin. From these

equations, we can show that the linear NMR behavior is completely determined by eigen-

values of

Ω2
ij ≡

∂2〈HD〉
∂θi∂θj

. (3.45)

We can “fingerprint” A and B phases by NMR [2, 5]! In the ABM phase, we get a

single resonance line. In the planer phase, alternatively, we get split resonances. Thus,

these two phases can be easily resolved by the NMR experiments. The BW is much more

interesting. The original BW state is L = −S, i.e., J = 0. However, to minimize the

dipole energy, the dipole torque rotates d(k̂) by the angle of cos−1 (−1/4) = 104◦ around

the axis ω̂. This means that the relative orientation of L and S is changed and J no

longer has a unique value. Under an external magnetic field, the “best” choice of this axis

ω̂ is parallel to Hext. Thus, once θ is settled on its equilibrium value 104◦, any further

twisting perpendicular to ω̂ is, to linear order, simply equivalent to a change in ω̂ with θ

fixed. Therefore, this twisting cannot give rise to a dipole torque, and there is no shift in

transverse resonance. It only shifts the finite-frequency longitudinal resonance5.

5This shift in the longitudinal resonance also appears in the ABM phase.
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3.8 Illustration of NMR behavior: A phase longitu-

dinal resonance

Throughout the experiment, d lies in the xy-plane (but may rotate), and we keep the

orbital part of the pair wave function fixed. The spin part of the pair wave function is

ΨN(t) ≈ (exp (i∆φ(t)/2) |↑↑〉+ exp (−i∆φ(t)/2) |↓↓〉)N/2 , (3.46)

where ∆φ is the relative phase between |↑↑〉 and |↓↓〉. Note that this state is a coherent

superposition of |↑↑〉 and |↓↓〉, not the mixed state. The variable canonically conjugate to

∆φ̂ is the z-component of total (not Cooper-pair) spin Ŝz, and the canonical commutation

relation is defined as

[Ŝz,∆φ̂] = 2i. (3.47)

The dipole interaction does not conserve spin and scatters from |↑↑〉 to |↓↓〉 (and vice

versa). Therefore, this interaction depends on the relative phase ∆φ̂ as

ĤD = −gD
4
cos∆φ̂. (3.48)

In the adiabatic approximation, the polarization energy is

Ĥ0 = Ŝ2
z/2χ− ŜzHext(t). (3.49)

Equations (3.47)-(3.49) show the analogy with a simple quantum pendulum (Fig. 3.8),

with the following correspondence:

∆φ̂→ θ (the angle of pendulum with vertical),

Ŝz → L (the angular momentum).

Equations (3.47)-(3.49) define the problem of a (driven) simple quantum pendulum. Gen-

erally, in the real-life experiments and in the semiclassical limit, we can treat Sz(t) and

∆φ(t) as classical variables. The canonical equations for these classical variables can be

written as
dSz

dt
= − ∂H

∂(∆φ)
= −gD

2
sin∆φ, (3.50)

d

dt
(∆φ) =

∂H

∂Sz

= 2

(
Sz

χ
−Hext(t)

)
. (3.51)

3.9 Digression: possibility of the “fragmented” state

The standard statement in a superconducting (superfluid) state is that the global U(1)

symmetry is spontaneously broken, which is experimentally untestable! What is really

55

《講義ノート》



A. J. Leggett LEC. 3. SUPERFLUID 3HE (CONTINUED)

small oscillations rotation

“internal Josephson effect”

Fig. 3.8. The analogy with a simple quantum pendulum.

important is that the relative symmetry: relative phase of |↑↑〉 and |↓↓〉. We assume (cf.

Eq. (3.46))

ΨN ∼ (exp(i∆φ/2) |↑↑〉+ exp(−i∆φ/2) |↓↓〉)N/2 , (3.52)

where ∆φ the definite relative phase, and essentially assume to be a classical value and

we ignore its quantum fluctuations. Why can we neglect the fluctuation? We can ask the

same question in a different manner. We can also think about the possibility for

ΨN ∼ (|↑↑〉)N↑(|↓↓〉)N↓ . (3.53)

This state has no definite phase relation between |↑↑〉 and |↓↓〉, while it has a definite

relative number

Sz = N↑ −N↓. (3.54)

Why we do not consider this possibility?

The answer is as follows. We consider the Hamiltonian

Ĥ =
Ŝ2
z

2χ
− gD

4
cos∆φ̂, (3.55)

in two cases: (a) gD � χ−1, and (b) gD � χ−1. In the case (a), the dominant term in

Eq. (3.55) is the second term. Therefore ∆φ is fixed, and Sz fluctuates. In contrast, in

the case (b), the first term is dominant. Thus, Sz is fixed, and ∆φ fluctuates. However

in general gD ≈ N and χ−1 ≈ N−1. In the thermodynamic limit, the case (a) is always

satisfied, and we need N < 109 to realize the latter6. While the case (a) corresponds to

an ordinary BEC, the case (b) corresponds to the “fragmented” BEC, which we discuss

in details in Sec. 4.2.

6In the ordinary bulk liquid, this condition is impossible. However, we can prepare a rather small
system, e.g. in small inclusions of a liquid 3He in a solid 4He, so that the case (b) may be observed in
such a case.
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3.10 Superfluid 3He: supercurrents, textures, and

defects

It is important that the pair wave function is expressed by the spin orientation vector

and orbital orientation vector. Before starting our discussions on the supercurrent, let us

briefly summarize the behaviors of the spin and orbital orientation vectors in the uniform

system. In the absence of any perturbation, the A phase is characterized by the spin

orientation vector d and orbital orientation vector `, which in a uniform situation are in

arbitrary directions. Similarly, the B phase is characterized by the rotation R̂ away from

the 3P0 state; R̂ again is arbitrary.

The dipole force (dominant perturbation in bulk) tends, in the A phase, to orient

d parallel (or anti-parallel) to ` because the end-over-end configuration is formed by `

lying perpendicular to the spins involved, which means ` lies in parallel to d, but the

common orientation is still arbitrary. In the B phase, it fixes the angle of rotation R

to be cos−1 (−1/4) = 104◦, but the rotation axis ω itself is still arbitrary. The external

magnetic field Hext tends to orient d perpendicular to Hext in the A phase, while it tends

to orient ω̂ parallel to Hext in the B phase.

What happens if the orientation vectors vary in space? It turns out that superfluid

currents appear. In this section, we briefly review the properties of the supercurrents in

the superfluid 3He and phenomena related to them.

3.10.1 Supercurrents

When the order parameter changes in space, there appears a current, in general. Since

there are more than one degree of freedom in the triplet superfluid, there can be some

non-trivial currents. We consider three situations where the order parameter varies in

space. The simplest one is the situation where d and ` (or ω̂) are fixed, and the only

thing that can vary is the overall phase φ. In such a case, an ordinary superfluid mass

flow similar to that in 4He appears

vs(R) =
~
2m

∇φ(R), (3.56)

where 2m comes from the formation of the Cooper pairs. The only special point is that in

the A phase the superfluid density ρs is a tensor with its axis defined by ` (ρs⊥ > ρs‖, since

more quasi-particles are excited parallel to ` since there are nodes in the ±` direction in

the ABM state. See Sec. 3.2.1.). Just as in the superfluid 4He, we can also expect vortices

to appear.

The second case is where φ and ` are fixed but d is spatially varying (or φ fixed but ω̂

varying). In this situation, the up-spin Cooper pairs are flowing in the different direction

to the down-spin Cooper pairs. Therefore, there is no mass current, but there is a spin

supercurrent.
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The final case is where in the A phase d is fixed but ` (and φ) varies in space. This

situation is more complicated than the others. Since F (r) ∼ f(r)sinθkexp(iφk), the

overall phase rotation is equivalent to the rotation around the `-axis. However, if ` varies

in space, such rotations are not holonomic, and ∇× vs 6= 0 in general [8].

3.10.2 Mermin–Ho vortex and topological singularities

If we continue to define vs in terms of infinitesimal rotations around `, i.e., by

vs ≡
~
2m

∇φ, (3.57)

then we find

∇× vs =
~
4m

∑
ijk

εijk`i∇`j ×∇`k. (3.58)

This leads to the possibility of “coreless” vortices (Fig. 3.9.). If we start from a situation in

which ˆ̀ is constant (say parallel to ẑ) in space and the condensate phase has a circulation

of 4π around the annulus, then by rotating ` locally around an axis in the xy-plane which

is perpendicular to the radial vector at that point, we achieve a fixed state in which ` is

everywhere antiparallel to the z-axis and the phase is constant. Thus, we have achieved

the phase which has no circulation around the contour in the middle.

A topological insulator in two dimensions is basically under the exactly same situation

we get now. A very useful tool for analyzing the possible varieties of texture in 3He-A

and B is the branch of mathematics known as the homotopy theory.

Energetics will always pin ` normal to the walls and experiments seem to be consis-

tent with this hypothesis. For the A phase in a simply connected geometry, topological

argument shows the ABM phase order parameter must have at least two topological sin-

gularities somewhere on the surface (most likely boojums, see Fig. 3.10.), and also, apart

from these topological singularities, have all sorts of nonsingular textures (of d, `,ω).

no circulation

4π of circulation

Fig. 3.9. Schematic illustration of the Mermin–Ho vortex.
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“boojum”

Fig. 3.10. Schematic illustration of the boojum texture.
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[7] Question from a student: Does this estimation depend on whether the anisotropic

Fermi superfluid has the macroscopic angular momentum or not?

Answer : It is thought that all pairs away from the Fermi surface are independent as

regards to their spins. Therefore, only the few close to the Fermi surface can affect

this estimation. So the answer is “it is the same”.

[8] Question from a student: What kind of current is it? It is neither superfluid mass

current nor superfluid spin current.

Answer : No. It turns out that if ` is varying in space, in general there is a mass

current, but the formula for it is more complicated.

60

《講義ノート》



Lec. 4 Definition and diagnostics of

“exotic” superconductivity

What do we mean by “exotic” superconductors? To some extent, it is a matter of

convention or a definition, but crudely speaking, one can isolate quite a large number

of properties, which are common to the old-fashioned superconductors and not found

in some of recent ones. The principal and common characteristics of the “classical”, or

old-fashioned superconductors are

(1) Tc ≤ 25 K.

(2) The normal state is well described by the Fermi-liquid theory.

(3) The mechanism of Cooper-pair formation is the phonon-induced attraction.

(4) The symmetry of the order parameter (the pair wave function) is the s-wave.

All of these properties are common to a wide class of materials, such as aluminum, lead,

tin, etc. In fact, until 1986 one could say that all the superconductors have the transition

temperature Tc less than 25 K, and they are all classical superconductors. Note that

there are two exceptions to this “definition”: BKBO and MgB2. BKBO and MgB2 have

transition temperatures Tc ' 30 K, and Tc ' 40 K, respectively, much higher Tc than

that for the typical classical superconductors. Except for this extraordinarily high Tc,

however, they seem to behave exactly like classical BCS superconductors, so we rather

often classify them as classical superconductors.

In addition to the above four characteristics, there are three other properties which are

usually but not always satisfied among many superconductors:

(5) The crystal structure is essentially three-dimensional.

(6) The superconducting state is not close to other broken symmetry phases (e.g., an-

tiferromagnetic).

(7) For alloys, the superconductivity is not particularly sensitive to stoichiometry.

“Exotic” superconductors, in contrast, fail to satisfy at least one of (1)-(7), as we can

see from Table 4.1. The cuprates are the most non-BCS like of all the superconductors

known today. That is why I will spend most of the time of the lectures to the cuprates.
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Table 4.1. The list of the common or usual properties for the superconductors.

Property Classical Heavy-fermions Organics Ruthenates Fullerenes Ferropnictides Cuprates

1. Tc < 25 K (
√
)

√ √ √
× × ×

2. Fermi liquid normal state
√

× × ×
√

(
√
) ×

3. Phonon mechanism
√

× ? ?
√

× ×
4. Order parameter s-wave

√
? ? ×

√
(×) ×

5. Crystal structure 3D
√ √

× × × × ×
6. No neighboring transition

√
×

√ √ √
× ×

7. Stoichiometry-insensitive
√ √ √ √

× × ×
Maximum Tc[K] 40 2 15 2 40 56 150

How do we know whether the above properties are satisfied? The conditions for (1)

the transition temperature, (5) crystal structure, (6) broken-unbroken symmetry phases,

and (7) stoichiometry can be checked more or less by direct inspections. Whether (2)

the normal state is well described by the Fermi liquid theory can be seen by Fermi liquid

like signals: the specific heat is linear in temperature, the conductivity satisfies Bloch-

Grüneisen formula, etc. Therefore, one can judge more or less from experiments and a

little theory.

How about (3) and (4), the mechanism of the Cooper pair formation and the symmetry

of the pair? I think the most obvious evidence for the phonon-induced attraction is the

isotope effect, which can be seen from the quantitative agreement between the BCS theory

and the experiment. A valid evidence for the symmetry of the pair to be s-wave can be

obtained if many experimental quantities such as the specific heat fall off exponentially

with temperature. This shows that the gap must have non-zero value everywhere on the

Fermi surface. The certain and most obvious way that can happen is the pairs forming

the isotropic state.

4.1 Diagnostics of the non-phonon mechanism

4.1.1 Absence of isotope effect

How do we find the mechanism to be phonon or non-phonon induced ones? The first

consideration, as you might expect, has to do with the isotope effect. Let us have a brief

review of the isotope effect in the BCS theory.

In the original BCS theory, the transition temperature is proportional to M−1/2, where

M is the isotope mass. This can be seen easily by assuming a constant interaction around

the shell of the Fermi surface, recalling that the width of that shell is proportional to the

Debye frequency, which is proportional to M−1/2.
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A theory of Tc for a realistic phonon-plus-Coulomb interaction is complicated and re-

quires solutions of Eliashberg equations [1, 2]. McMillan [3] argued that a good analytic

approximate solution of the Eliashberg equation is

Tc =

(
ΘD

1.45

)
exp

(
−
[

1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

])
, (4.1)

λ ≡ 2

∫ ωD

0

α2(ω)F (ω)

ω
dω, (4.2)

where α(ω) is the phonon coupling function and F (ω) is the phonon density of state,

and ΘD is the Debye temperature. The quantity λ is proportional to the static local

compressibility of the lattice, which is independent of the isotope mass M since it is

irrelevant to the ionic motion. Then where, apart from the parameter Θ, does the isotope

effect comes in? In this formula µ∗ represents the Coulomb pseudopotential defined as

µ∗ ≡ N(0)〈V̂c〉
1 +N(0)〈V̂c〉 ln(εF/ΘD)

, (4.3)

where 〈V̂c〉 is the averaged Coulomb interaction. In an approximation of ignoring ΘD-

dependence of µ∗, Tc is simply proportional to ΘD and then proportional to M−1/2.

Therefore, the “isotope exponent” αI ≡ − ∂(lnTc)

∂(lnM)
becomes

α =
1

2
, (4.4)

which is just the “textbook” BCS result.

If we take into account the dependence of µ∗ on ΘD with the formula (4.3), the isotope

exponent becomes

αI =
1

2

[
1− 1.04µ∗2(1 + λ)(1 + 0.62λ)

[λ− µ∗(1 + 0.62λ)]2

]
<

1

2
. (4.5)

Thus even if µ∗ is small, αI can deviate appreciably from 0.5 (and can even be negative!)

in the BCS theory. Crudely and qualitatively speaking, therefore, we can reasonably say

the following things:

αI ' 0.5 ⇒ probably phonon-mediated;

αI � 0.5 ⇒ probably but not certainly non-phonon-mediated;

αI > 0.5 ⇒ possibly phonon-mediated but the BCS theory certainly is inapplicable

(no cases known so far).

This is a fairly a standard argument, which is usually given in literatures. However

the above argument does not take into account other possible ways in which isotopic

substitution could modify Tc, such as lattice distortion. For example, let us substitute the

deuterium 2D into the hydrogen 1H in a superconductor. Since the deuterium has much

a smaller zero-point energy than the hydrogen, it tends to modify the lattice structure.

Therefore, even if we see the large isotope effect, we must not conclude the interaction

must be phonon-mediated. It is possible that something more sophisticated occurs.
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4.1.2 Absence of phonon structure in tunneling I-V character-

istics

Recall that in the BCS theory the gap equation takes the form

∆k = −
∑
k′

Vkk′
∆k′

2Ek′
. (4.6)

However, in a realistic theory of a phonon-mediated interaction, the interaction potential

Vkk′ , even in a normal state, is energy dependent:

Vkk′ = |gkk′ |2 εk′ + ωph(k − k′)

(εk′ + ωph(k − k′))2 − ε2k
. (4.7)

In this situation, it turns out that we have to modify the BCS calculation by a little bit

and need the Eliashberg theory [1, 2]. I think the Eliashberg equation is for many people

very non-intuitive, but most people believe that it describes the electron-phonon interac-

tions well. If one solves the Eliashberg equation, the “gap” (off-diagonal field) becomes

frequency-(energy-)dependent ∆ → ∆(ω) (but nearly independent of momentum). At

T = 0, the gap equation becomes

∆(ω) =
1

Z(ω)

∫ ∞

0

dω′Re

{
∆(ω′)

(ω′2 −∆2(ω′))1/2

}
×
{∫ ∞

0

dΩα2(Ω)F (Ω)
2(ω′ + Ω)

(ω′ + Ω)2 − ω2
− µ∗

}
. (4.8)

Here Z(ω) is the renormalization function, given by the second Eliashberg equation.

McMillan and Rowell [4] pointed out that if we actually look at a tunnel junction

between superconductors and normal metals the differential tunnel conductance measures

∆(ω) by
(∂I/∂V )S
(∂I/∂V )N

= Re

{
ω

(ω2 −∆2(ω))1/2

}
, ~ω = eV. (4.9)

Using this Eliashberg equation, we can reconstruct α2(Ω)F (Ω) from ∆(ω) obtained in

this tunneling experiment. On the other hand, the phonon density of state F (Ω) can

be directly measured by the neutron scattering, and α(Ω) can be obtained by the fairly

well calculations. Therefore, we can compare α2(Ω)F (Ω) obtained by these two different

methods, and see whether they give a consistent value. For the BCS superconductors,

these two are known to agree very well.

In a qualitative point of view, if the origin of Cooper pairing is the phonon-mediated

attraction, then peaks in neutron scattering spectrum (i.e., in F (Ω)) must be reflected

in the tunneling I-V characteristic. Conversely, absence of such a characteristic usually

implies the non-phonon mechanism.

Of the existing groups of the “exotic” superconductors, the alkali fullerides and possibly

the organics are the only ones where the mechanism seems to be the phonon-mediated one.

All the other groups in the Table 4.1 have the evidence for the non-phonon mechanism.
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4.2 General properties of the order parameter

4.2.1 Definition of the order parameter

Since the many-body wave function is unlikely to be the simple BCS type, to discuss

this subject we need a more general definition of the order parameter or the pair wave

function [5]. The works of the superfluidity and superconductivity are started off from

an early work by Penrose and Onsager [6] on the superfluid 4He. Here, we parallel the

discussion on the superfluid 4He and on the superconductors to get a general way to

describe the pairing in the superconductors.

Consider the two-particle reduced density matrix

ρ2(r1σ1, r2σ2 : r
′
1σ

′
1, r

′
2σ

′
2 : t) ≡ 〈ψ̂†

σ1
(r1t)ψ̂

†
σ2
(r2t)ψ̂σ′

2
(r′

2t)ψ̂σ′
1
(r′

1t)〉

= N(N − 1)ps
∑

s,σ3···σN

∫
d3r3 · ·d3rN

Ψ∗
S(r1σ1, r2σ2, ··, rNσN : t)ΨS(r

′
1σ

′
1, r

′
2σ

′
2, r3σ3 · ·, rNσN : t).

(4.10)

Here ps is the probability of the occupation of the many body state s. Crudely speaking,

this is the best possible representation of “the effective behavior of two electrons averaged

over behavior of remaining N − 2”. Note all two-particle expectation values can be

expressed in terms of ρ2. For example, if we consider the two-particle potential energy

V̂ ≡ 1

2

∑
ij

V (r̂i − r̂j), (4.11)

its expectation value is given as

〈V̂ 〉(t) =
∑
σ1σ2

∫ ∫
d3r1d

3r2V (r1 − r2)ρ2(r1σ1r2σ2 : r1σ1r2σ2 : t). (4.12)

Furthermore, the one-particle reduced density matrix can be given by

ρ1(rσ, r
′σ′ : t) =

1

N

∑
σ2

∫
d3r2ρ2(rσ, r2σ2 : r

′σ′, r2σ2 : t) +O(N−2). (4.13)

Thus, basically, if we know the two-particle reduced density matrix, we know all the

physically meaningful quantities of the system. This, of course, does not mean we know

all about the system. It is possible that the many-body wave functions are totally different

but still give the same reduced density matrix1, and for a certain physical quantity they

give different values. However, for most practical purposes in the traditional condensed

matter physics, the two-particle density matrix really gives all we need to know.

1I know no particular case this occurs, but, for example, in the topological quantum computing that
question can arise.
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As a function of the variables (r1σ1, r2σ2), the two-particle reduced density matrix ρ2
is Hermitian by construction. Therefore, it can be diagonalized, i.e., always written in

the form

ρ2(r1σ1, r2σ2 : r
′
1σ

′
1, r

′
2σ

′
2 : t) =

∑
i

ni(t)χ
∗
i (r1σ1, r2σ2 : t)χi(r

′
1σ

′
1, r

′
2σ

′
2 : t), (4.14)

∑
i

ni(t) = N(N − 1), (4.15)

where {χi} is an orthonormal set (χi, χj) = δij. Note that as Yang proved [5], the

maximum value of any one ni is O(N), not O(N2). Another thing to notice is that ρ2
must be antisymmetric under (r1σ1 
 r2σ2) etc. due to Fermi statistics, so must be

eigenfunctions χi. The two-particle density matrix is a very intuitive way of looking at a

behavior of the many-body system. If we just take two particles at random and look at

the behavior averaged over all the other N−2 particles, then we have a certain probability

proportional to ni(t) that we find the particular two-particle state of this form.

From now on we assume the states to be time-independent since we would like to

consider the equilibrium state. In principle, there are three possibilities:

1. All eigenvalues ni ∼ o(1) (normal state) (e.g., free Fermi gas).

2. Two or more eigenvalues are O(N), and the rest eigenvalues are o(1) (“fragmented”

pseudo-BEC, usually disregarded2).

3. Only one eigenvalue is O(N), and the rest eigenvalues are o(1) (“simple” pseudo-

BEC, i.e., Cooper pairing).

In the case 3, there is the “special” state which has the largest eigenvalue of ρ2. Let us

denote the largest eigenvalue as N0 ∼ O(N), and define

F (r1σ1, r2σ2) ≡
√
N0χ0(r1σ1, r2σ2), (4.16)

which is the order parameter or the pair wave function. For the BCS case this definition

reduces to the one given in Lec. 2. Note that from the orthonormality condition on the

χi, we have ∑
σ1σ2

∫
d3r1d

3r2|F (r1σ1, r2σ2)|2 = N0. (4.17)

Therefore, N0 can be regarded as the “number of Cooper pairs” just as in the BCS case.

A possible alternative definition of F is

F (r1σ1, r2σ2) ≡ 〈N + 2|ψ̂†
σ1
(r1)ψ̂

†
σ2
(r2)|N〉, (4.18)

2See discussion in Sec. 3.9 of spin triplet pairing in the limit gD → 0. For 3He, if the dipole energy
and the number of the particles are small enough, the Cooper pairs are not the coherent superposition
of ↑↑ and ↓↓ but half of them are ↑↑ and the half are ↓↓. Such state is a fragmented state. However, this
is unusual because non-fragmented states almost always take over in the thermodynamic limit.
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where |N〉, |N +2〉 are ground states (often “abbreviated” 〈ψ̂†
σ1
(r1)ψ̂

†
σ2
(r2)〉 with implicit

assumption of N -non-conservation).

If we define the center of mass coordinate and the relative coordinate by

R =
r1 + r2

2
, r = r1 − r2, (4.19)

then

F ≡ F (R, r, σ1, σ2). (4.20)

For this lecture, we will usually be interested in the case in which F is independent of R,

i.e.,

F = F (r, σ1, σ2). (4.21)

This implies the translational invariance of the system. This is not quite accurate in a

crystal, but crudely speaking, even for that case we will usually be more interested in the

dependence on the relative coordinate than in dependence of the center of mass coordinate.

Talking about the “symmetry of the order parameter”, we mean the dependence of F on

r, σ1, σ2.

4.2.2 Order parameter in a crystal3

For the moment, I am going to assume we can forget about spin-orbit coupling. I will

come back to that at the end of this lecture. It turns out forgetting about the spin-orbit

coupling does make the problem considerably simpler. In addition, we restrict ourselves

for the moment to the case where only a single band4 intersects the Fermi surface5.

Let us take the Fourier transform of Fαβ(r) in the Bloch basis, i.e.,

Fαβ(k) ≡ 〈a†kαa
†
−kβ〉 = −Fβα(−k), (4.22)

where k is the Bloch wave (not plane wave) and the last relation follows from the Fermi

statistics. Because we neglect spin-orbit coupling, we can deal with the spin and the

orbital wave function separately, i.e.,

Fαβ(k) = sαβf(k), (4.23)

where f(k) is the orbital wave function and sαβ is the spin wave function. As you know,

we can adopt s(`s,ms)αβ (`s = 0 or 1, ms ≤ `s) as a basis of the spin wave function,

3For exhaustive discussion, see Ref. [7].
4You might object here that I am talking implicitly in free electron language. This is indeed a very

delicate point but I assume we can get away with this. The evidence is in certain exotic superconductors
we can. Thus the idea of identifying different bands, even though it is, strictly speaking, a sort of
non-electron kinds of scenario, still makes sense mostly.

5Not true for Sr2RuO4, ferropnictides. etc.
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where s(`,m)αβ’s are defined as

s(1, 1)αβ = δα↑δβ↑,

s(1, 0)αβ =
1√
2
(δα↑δβ↓ + δα↓δβ↑),

s(1,−1)αβ = δα↓δβ↓,

s(0, 0)αβ =
1√
2
(δα↑δβ↓ − δα↓δβ↑).

(4.24)

Note that s(1,ms)αβ is symmetric, while s(0, 0)αβ is antisymmetric. By combining this

fact with Eq. (4.22), we can conclude

sαβ: spin-singlet ⇔ f(k): even parity,

sαβ: spin-triplet ⇔ f(k): odd parity.

Spin symmetry

In the spin-singlet case,

Fαβ(k) = −(iσy)αβf(k) = −
√
2s(0, 0)αβf(k) (4.25)

with f(−k) = f(k). In the spin-triplet case, we can define, just as for 3He,

d(k) ≡ −(iσyσ)αβFβα(k) = −tr[(iσyσ)F (k)]. (4.26)

In the last equation, we regard Fαβ(k) as a two by two square matrix. Inversely, we can

represent Fαβ(k) in terms of d(k):

Fαβ(k) = i[d(k) · σσy]αβ/2 (4.27)

=
1

2
[(−d1(k) + id2(k))s(1, 1)αβ +

√
2d3(k)s(1, 0)αβ + (d1(k) + id2(k))s(1,−1)αβ],

with d(−k) = −d(k). If d(k) is real, which is true for most of the cases we are interested

in, d(k) represents the direction along which pair (k,−k) has Sz = 0. (i.e., d ·S|F 〉 = 0.)

In principle, we could take linear combinations of spin-singlet and triplet states. How-

ever, in the absence of spin-orbit coupling, we have to chose very pathological values of

the parameters to realize such an ground state. Therefore, at least in the absence of

spin-orbit coupling, the question of spin symmetry is very straightforward.

Orbital symmetry

What about the orbital symmetry? There is a rather delicate point here. Strictly

speaking, once we get away from the simple BCS-like picture, we should not really assume

the quantity Fαβ(k), which is the order parameter or the effective wave function of pairs,
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has much to do with the energy gap ∆αβ(k). However, let us assume, at least as a minimal

assumption, that the dependence of Fk on the magnitude of k is not qualitatively different

from the BCS form ∆k/2Ek, where ∆k is roughly independent of |k|. If that is true, then
the angular dependence of Fαβ(k) on the Fermi surface is much the same as that of

∆αβ(k).

The crucial point is that the possible forms of Fk are classified by transformation

properties under the crystal symmetry operations, such as the reflection at k = 0, rotation

around a certain axis. If Fk transforms according to the identity representation, we call

the superconductivity is “conventional”, or “s-wave” like (need not to be totally spherical

since in a crystal we have only discrete rotational operation), otherwise “exotic”.

4.3 Diagnostics of the symmetry of the order param-

eter

Let me move on to the question: how one can diagnose the symmetry of the order

parameter? It is difficult to obtain the whole form of the order parameter only by a single

type of measurements. Each kind of experiments provides only partial information, such

as its spin state, orbital state, node, etc. In this section, I introduce various methods to

determine the symmetry of the order parameter.

4.3.1 Diagnostics of the spin state

The spin susceptibility (via the Knight shift)

The simplest way to observe the spin state of electrons in solid is to measure the Pauli

susceptibility via the Knight shift. As shown in Fig. 4.1 (a), for the spin-singlet state, just

like the BCS one, χ/χn falls to 0 as T → 0 because the opposite spins are pairing up and

it takes a finite pairing energy to break the pairs. We can apply the same argument to

the ESP triplet states with d(n)‖H . However, for the ESP triplet states with d(n) ⊥ H ,

χ/χn remains approximately constant. To understand this behavior, let us take the ESP

state with d(k) = d(k)êz as an example. From Eq. (4.27), the pair wave function is given

by

Fαβ(k) =
d(k)

2
(δα↑zδβ↓z + δα↓zδβ↑z). (4.28)

Therefore, if we apply a magnetic field in the z-direction (d(n)‖H), we have to sacrifice

the pairing energy to gain the Zeeman energy, from the reason I explained just above.

However, if we change the spin axis from z to x, the same state can be re-expressed as

F ′
αβ(k) =

d(k)

2
(δα↑xδβ↑x − δα↓xδβ↓x). (4.29)
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singlet

isotropic triplet

ESP triplet (            )

ESP triplet (         )

(a)

(b)

(c)

Fig. 4.1. (a) The Pauli spin susceptibility via the Knight shift. (b) A magnetic field

generates a difference on the radius of the Fermi sphere between up and down spins. (c)

The “Hebel–Slichter” coherence peak in the NMR.

Since the fermions with the same spin are pairing up or down in the x-direction, when

we apply a magnetic field in the x-direction (d(n) ⊥ H), the field does not interfere with

the pair formation, and the susceptibility in this case is not be much different from that

in the normal state. On the other hand, for a non-ESP triplet, (e.g., the BW-type state),

some pairs are formed in a spin antiparallel configuration seen in the magnetic field axis,

so that 0 < χ/χn < 1. We can therefore conclude that

χ(T = 0) 6= 0 ⇒ Spin-triplet,

χ(T = 0) = 0 ⇒ Either the spin-singlet, or the ESP triplet with d ‖ H .

The Chandrasekhar–Clogston (CC) limit on the upper critical field Hc2 [8, 9]

Almost all exotic superconductors are extreme type-II. In an old-fashioned BCS-type

superconductor, the upper critical field may be set by the Meissner effect. However,

if the superconductor becomes very dirty, the upper critical field Hc2 predicted from a

naive “Meissner” effect becomes really enormous, on the order of 103 Tesla. Under those

circumstances, the actual Hc2 may be set by the second limiting effect. This effect is

due to the fact that if we apply the large enough field, it is energetically advantageous to

simply forget about the pairing and obtain the Zeeman energy, leaving the system in the

normal state (Fig. 4.1 (b)). This may occur at the point when the field H becomes the

order ∆(0)/µB. If the pairing is spin-singlet or the ESP state with d ‖ H , we expect this

effect. Thus, we crudely conclude that

Absence of the CC limit ⇒ Spin-triplet.

Presence of the CC limit ⇒ Spin-singlet or the ESP triplet with d ‖ H .
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The “Hebel–Slichter” (HS) coherence peak in NMR

The prediction from the BCS theory is that if we measure the relaxation rate of nuclear

spins of metal, in the normal phase, it is proportional to T . The spectacular prediction

of the BCS theory, assuming a singlet pairing, is that if we go into the superconducting

phase as we lower the temperature, it first rises due to the singularity (∝ (E2 −∆2)−1/2)

in the density of states at the edge of the gap, and then it drops (Fig. 4.1 (c)) [10]. The

presence of this HS peak requires

(a) Singularity in DOS at gap edge.

(b) Absence of canceling factor (∝ (E2 −∆2)) in matrix element, due to coherence.

Unfortunately, (b) should still hold for the spin-triplet case, and thus the presence or

absence of the HS peak does not give much information about the spin state. The peak

is predicted to be half “canonical” size, but it is difficult to check this.

4.3.2 Diagnostics of the orbital state

Before I start off explaining the diagnostics of the orbital state, let me give two cautions:

(1) Even if the order parameter transforms according to the identity representation of

the crystal group, it may still have nodes. This is called “extended s-wave” (see

Fig. 4.2 (a) as an example).

(2) The order parameter Fk is a two-particle (“bosonic”) quantity, whereas the energy

gap ∆k is single-particle (“fermionic”) quantity, since it is the actual gap in the

single-particle spectrum. Within the BCS theory, the two are closely proportional

as regards the angular dependence since

Fk = ∆k/2Ek, (4.30)

(a) (b)

Fig. 4.2. (a) An example of the extended “s-wave” type gap. (b) An example of the 2D

Fermi surface and the gap with the point node.
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and in most of the range of k, Ek does not have large dependence on the direction

of k. However, this need not necessarily be true in a more general theory. Thus,

strictly speaking, one should try to distinguish carefully between those experiments

which measure the energy gap ∆k and the order parameter Fk.

Measurements of |∆k|

The most obvious thing we can measure is the actual magnitude of the gap ∆k
6, since

there are several ways in doing this. As far as I know, there are only very indirect ways

in measuring the actual complex quantity ∆k itself. On the other hand, there are some

nice ways of measuring the complex quantity Fk
7. The main thing I am thinking in this

context is so-called Josephson-type experiments. They have been very important in the

analysis of the cuprates, and in somewhat (much less) important in the analysis of other

exotic superconductors. I will discuss this in detail when I talk about the cuprates in

Lec. 7.

Let us move on to the measurement of |∆k|.

(a) The most direct measurements of |∆k| are various kinds of spectroscopic measure-

ments, such as ARPES and STM. In principle, this kind of experiments do directly

measure |∆k| as a function of k and therefore as a function of position.

(b) The more indirect thermodynamic measurement is via measurement of the density

of states, Ns(E). Since Ns(E) is represented as

Ns(E) =
∑
k

δ(E − Ek) = N(0)

∫
|∆(n̂)|≤E

dΩ

4π

E√
E2 − |∆(n̂)|2

, (4.31)

it is proportional to the area of the Fermi surface S(E) where |∆(n̂)| ≤ E is satisfied [11].

Figure 4.2 (b) illustrates an example of a 2D Fermi surface and a gap with the point

node. We see that S(E) ∝ E if the gap function crosses its zero linearly at the node.

This situation is generalized to

• 3D, point node: Ns(E) ∝ E2.

• 3D, line node: Ns(E) ∝ E.

• 2D, point node: Ns(E) ∝ E.

If Ns(E) ∝ En, we know the low temperature behavior of physical quantities as follows

(see chapter 7 of Ref. [12]):

Specific heat: CV ∝ T n+1.

6In the triplet case, this is “total” gap and is proportional to |d(n)|.
7This is something only realized comparatively recently.
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Penetration depth: λ(T )− λ(0) ∝ T n.

Nuclear spin relaxation rate: T−1
1 ∝ T 2n+1.

Knight shift: Ks ∝ T n (for spin-singlet state).

Therefore, by measuring these quantity experimentally, we can determine the type of the

node.

Note that in three dimensions, if the orbital angular momentum ` is larger than 1 (i.e.,

` ≥ 2), the energy gap must always have nodes. For example, remember that when we

talking about superfluid 3He, I mentioned that in early days, people thought it is probably

d-wave pairing. There is a general theorem which claims if it is d-wave, there must be

at least two nodes on the Fermi surface. On the other hand, in two dimensions, it needs

not have node for any `, because we can have the order parameter Fk ∼ exp(i`ϕ) with

angular momentum `, but the magnitude of this is just a constant.

4.3.3 Effect of impurities

A digression: impurity scattering in the BCS (s-wave) superconductors

Let us consider the following Hamiltonian,

Ĥ = Ĥ0 + V̂ , Ĥ0 = K̂ + U(r, σ), (4.32)

where Ĥ0 (V̂ ) is the single (two)-particle Hamiltonian, and K̂ is the kinetic term and

U(r, σ) is an impurity potential. Let us forget about lattice potential for the moment.

We denote eigenenergies and eigenfunctions and of Ĥ0 as εn and χnσ(r, σ).

(A) Nonmagnetic impurities

If the impurity potential is independent of σ, i.e., U(r, σ) = U(r) , then the system

would be invariant under time-reversal. In that case, χ∗
n(r,−σ) is also an eigenfunc-

tion, with same energy εn. We can therefore pair electrons in time-reversal states

(Anderson’s theorem). Pairing between the exact eigenstates ensures that the ex-

penditure of Ĥ0 is minimal. In this case, the order parameter evaluated at the same

point F (r, r) ∼
∑

n |χn(r)|2 is rather large because it is a sum of positive values,

and hence we still get a large value for −〈V̂ 〉 even under the impurity. Thus, crudely

speaking, the outcome of Anderson’s theorem is that non-magnetic impurity do not

do anything significant to s-wave superconductivity8.

(B) Magnetic impurities

If the impurity potential depends on σ (i.e., U = U(r, σ)), time-reversal invariance

is broken. Then we have two choices:

8In fact, if anything, it tends to raise Tc but I will not explain it further here.
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(a) Pairing in the exact eigenstates εn of Ĥ0.

Using the exact eigenstates still ensures the minimum expenditure of kinetic

energy Ĥ0. However, F (r, r) is much reduced, because the Cooper pairs are no

longer formed in the time-reversal pairs. This is usually highly disadvantageous

and thus this choice is hopeless.

(b) Pairing in the eigenstates of K̂.

Firstly, we forget about the impurity and reconstitute the original “impurity-

free” Fermi sea. This is advantageous since it gain the original BCS conden-

sation energy Ec, originated from the large (not reduced) order parameter.

However, it sacrifices the energy due to U of Ĥ0:

∆EU = +
1

2
N(0)Γ2

U , (4.33)

where ΓU is, crudely speaking, the relaxation rate of the time-reversal operator.

It becomes energetically disadvantageous when ∆EU > Ec =
1

2
N(0)∆2

0, where

∆0 is the gap for a pure system. Hence, we expect the superconductivity to

disappear (at T = 0) at

ΓU = ∆0. (4.34)

Surprisingly, this very simple hand-waving argument is confirmed by the exact

Abrikosov–Gor’kov theory [13].

Generalization to the exotic order parameter9

Let us generalize the above argument to the exotic order parameter. Even if impurities

are nonmagnetic, exact eigenstates χn of Ĥ0 will now be complicated superposition of

k’s from all over the Fermi surface. Thus, if we pair in χn’s, 〈V̂ 〉 will be very small,

which is very disadvantageous. Therefore we must again “reconstitute” impurity-free

eigenfunctions. It cost some energy due to the impurity, ∆EU = 1
2
N(0)Γ2

` , (supposing

there is a dominant ` in Vkk′ ; Γ` is the relaxation rate of `-symmetry distortion). We

compare the energy loss with the gain of the condensation energy. By analogy with the

above argument, superconductivity disappear when Γ` = ∆0.

4.4 Addendum: the effect of spin-orbit coupling

The discussion of the spin-triplet pairing in Lec. 2 and above implicitly assumes that the

eigenstates of the single-particle Hamiltonian Ĥ0 are mostly10 invariant under the spin

rotation and the orbital crystal group separately. Under these conditions, the pairing

9For more details cf. pp. 347-348 of Ref. [14].
10Except for dilute magnetic impurities, etc.
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state can usually be classified into the spin-singlet and the triplet state, as discussed in

Sec. 4.2.2. Mixing of these two possibilities requires rather pathological values of the

parameters.

If Ĥ0 is not invariant under spin and orbital operations separately, on the other hand,

there may be strong mixing of the spin and orbital degrees of freedom. The most obvious

origin of this is spin-orbit coupling. Because it is scaled as Z3, it rapidly becomes important

in heavy metals, e.g. U compounds. Under these conditions the only symmetries left are

parity P and time-reversal T (both of which are preserved by spin-orbit coupling ∝ ` · s),
and we must use only these to classify the irreducible representations (see Ref. [7] for

further details).
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Lec. 5 Non-cuprate exotic

superconductivity

5.1 Alkali fullerides

5.1.1 Structure

Formula of this compound is A3C60, where A is some alkali element (Na, K, etc.) and

C is a carbon. C60 molecule has a famous soccer-ball pattern, with 20 hexagons and 12

pentagons; its symmetry is icosahedron. While the carbon atom has a molecular orbital

1s22s22p2 in C60 molecule or solid, and 2s and 2p orbitals hybridize to form four sp2 states.

Of these, three are used up in the σ bonding (in-plane bonding), leaving one electron per

carbon atom, i.e., 60 electrons per C60 molecule, in the pz-like state. It is this last electron,

which sticks out of the surface of the soccer ball, that controls the low-energy properties.

Obviously the theory of the electronic states of the C60 molecule is quite complicated, so

we will not go into in its details and we only briefly summarize its important properties;

C60 molecule has various molecular orbitals as usual. The highest occupied molecular

orbital (HOMO) state is 5-fold orbitally degenerate, and the lowest unoccupied molecular

orbital (LUMO) is 3-fold degenerate. In the single molecule, the HOMO-LUMO splitting

is ∼0.6 eV.

5.1.2 Fullerene crystals

When a large number of C60 molecules are put together, they form a so-called fullerene

crystal. Its lattice has the face centered cubic structure; the cubic lattice parameter is

P

P

H

H

Fig. 5.1. Lattice structure of C60.
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band gap

DOS

top of HOMO band alkali ns state

Energy

Fig. 5.2. Density of states of fullerene crystals.

∼14.2 Å, which roughly corresponds to the close-packing of C60 molecules. The compli-

cated point which arises in connection with the crystals is that individual molecules can

have two different orientations. Despite the fact that the molecules look pretty spherical,

they are not exactly spherical, so there are two slightly different orientations for each

molecule. Quite often, by just quenching the C60 into a solid state, one finds that the

orientation of each molecule may be tuned to either of these two orientations. This phe-

nomenon is called merohedral disorder, which is quite important for the detailed theory

of transport, etc., but we do not go into its details here.

If C60 molecules are combined, they form a band structure. The density of states (DOS)

of the band which evolves from the LUMO state is shown in Fig. 5.2. One finds a dip in

the middle of the band, which is sensitive to the lattice parameter. This fact is important

when one considers the origin of superconductivity.

5.1.3 Alkali fullerides

A pure fullerene crystal, a simple collection of C60 molecules, is not superconducting but

a fairly good band insulator with a band gap ∼ 1 eV. When alkali atoms are introduced

to the crystal, there are certain positions in the crystal where alkali atoms are likely

to locate. Since the energy levels of the intercalated alkali atoms are slightly above the

LUMO bond (Fig. 5.2), they will donate their s-electrons to the LUMO band. Thereafter,

the ionized alkali atoms, the cores of the rare-earth metals, just serve as spectators , playing

no important role in the behavior of the system (cf. charge reservoir atoms in cuprates).

The normal-state properties of fullerene crystal are roughly consistent with textbook

picture of half-filled band: the specific heat Cv ∼ T , the Pauli spin susceptibility χ ∼
const., and the spin-lattice relaxation time T1 ∼ T−1 etc. Note that experiments such

as photoemission and plasmons confirm that the DOS at the Fermi energy N(0) ≡
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1

2

(
dn

dε

)∣∣∣
ε=εF

, an important value for transport in normal and superconducting states,

is strongly dependent on the lattice constant a.

5.1.4 Superconducting state

Superconductivity in AxC60 occurs only when the filing of alkaline atoms x is almost

equal to 3, but then has Tc up to ∼ 40 K (Cs3C60). This high transition temperature is

quite surprising because the intercalated graphite, for example KC8, has Tc lower than

1 K. Tc increases as the lattice spacing a is increased by the pressure or substitution;

typically, the increase in Tc by the lattice spacing is given by

∂Tc
∂a

∼ 33 K/Å. (5.1)

This is consistent with the BCS result

Tc ∼ ωD exp(−1/N(0)V0), (5.2)

under the assumption that V0 comes mainly from the intramolecular origin hence insen-

sitive to a, and that the density of states N(0) increases with a.

A3C60’s are strongly type-II. In fact, the pair radius is ξ(0) ∼ 26 Å, which is less than

twice the lattice spacings, and the London penetration depth is λ(0) ∼ 2400-4800 Å.

What are the characteristics of the pairing state? Behaviors of the spin-lattice relaxation

time T1 and the infrared reflectivity seem to suggest that the quasi-particle density of

states is small when |E| < ∆ ≈ 1.76kBTc, as it should be in the BCS theory. The Hebel–

Slichter peak is seen in the muon spin resonance (µSR) and 13C NMR, which strongly

indicate the pairing state has an s-state as in the BCS superconductors. So far, everything

is consistent with the ordinary BCS superconductors except for one slight puzzling thing:

the deviation of the London penetration depth from its zero temperature value does not

follow an exponential law but some power law:

∆λ(T ) ∼ Tα, α ∼ 3. (5.3)

What about the pairing mechanism? The isotope substitution 12C by 13C yields a large

isotope exponent ≈ 0.4; remember that the isotope exponent value of the ideal BCS-type

superconductor is exactly 0.5, and in real life there are various reasons for underestimating

the value. This fact is therefore consistent with the phonon mechanism. However, one

finds rather unusual situation in the ratio between the Debye frequency and the Fermi

energy. Since carbon atoms are light and tightly bound in the solid, we have a large Debye

frequency, and the Fermi energy is not that high. Then one obtains the ratio

ωD/εF ∼ 0.3-0.6. (5.4)
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which is far larger than that of the BCS superconductors, typically ωD/εF ∼ 10−2. There-

fore, even if the mechanism has phonon as its origin, details seem to be rather different

from the BCS theory. The prevalent explanation is that alkali fullerides are pretty well

described by the BCS theory, but that the strong molecular structure enables them to

avoid the limit on Tc (cf. MgB2).

5.2 Organics

There are various kinds of organic superconductors. Most of the extensively studied ma-

terials are quasi-2D crystals based on ET(BEDT-TTF) (bis(ethylene-dithio)-tetrathiafulvalene)

(Fig. 5.3). Their structures have the form (ET)2X, where X is a monovalent anion (I−3 ,

Cu(NCS)−2 ...). The structure is slightly counterintuitive (Fig. 5.4 (a)): conducting layers

consist of (ET)2, and the blocking layers consist of anions. Conventionally in the lit-

eratures, a-axis is taken parallel to the stacking direction of anion layers. These layers

are pretty insulating, which makes difficult the electronic transportation along the a-axis.

Pretty flat (ET)2 molecules line up along the b-axis, constructing metallic layers in the

system. The distance between the insulating layers is quite large, ∼ 50 Å.

5.2.1 Normal state

In the normal state, the conduction electron density is quite low (∼ 1021 cm−3). This

feature is characteristic of quite a few classes of exotic superconductors including cuprates.

They have a strong a-axis anisotropy1: ρa/ρbc ∼ 102-103, which is comparable to cuprates.

Interestingly, clean samples made possible the de Haas-van Alphen (dHvA) type oscillation

experiments. The dHvA-effects are electronic oscillatory effects under strong magnetic

field. As a result of the fact that different orbits constitute the Fermi surface, various

physical quantities such as susceptibility, resistivity etc. are periodic in the inverse of

the magnetic field 1/B. The dHvA experiment requires quite clean samples; crudely

speaking, the period of cyclotron motion in the magnetic field must be smaller than

the scattering time. This condition, although practically quite stringent, is satisfied in

the organic superconductors. Figure 5.4 (b) shows a typical Fermi surface; everything is

Fig. 5.3. Ethylene-dithio molecule.

1Confusingly, the conventional notation calls the hard direction a, not c as in the cuprates.
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a

b“Blocking” anion 
layers 

c b

c

holes

(a) (b)

Fig. 5.4. (a) Crystal structure of organic superconductors. (b) Fermi surface of (K-

(ET)2Cu(NCs)2).

strongly two-dimensional, i.e., cylindrical in three dimensions. This implies the conduction

electrons cannot penetrate the blocking anion layers.

5.2.2 Superconducting state

The superconducting state typically has Tc ∼ 10-12 K. Normally, superconductors with

Tc ∼ 10 K are not regarded as high-Tc. However, there is an argument as follows: the

calculated in-plane hopping matrix element is small. This means that the bands which

form in-plane are narrow and the Fermi energy is small. If one expresses Tc not in terms

of Kelvin but rather as the fraction of Fermi energy/Fermi temperature, then the Tc value

divided by TF is comparable to that of cuprates. In this sense, the organic superconductors

can be regarded as high-temperature superconductors.

The organic superconductors have the following physical properties:

• Extremely type-II (Hc1 ∼ a few mT, Hc2 ∼ 8-15 T).

• Estimated pair radius ξ|| ∼ 50 Å in the easy plane, while ξ⊥ ∼ 5 Å (� interlayer

distance ∼ 50 Å) along the hard axis.

• Symmetry: CV(T ) ∼ e−∆/T for T → 0 =⇒ characteristic s-wave.

• Nuclear spin-lattice relaxation time: T−1
1 ∼ T 3 =⇒ substantial low-energy DOS.

No Hebel–Slichter peak.

• Isotope effect: the substitution 12C → 13C has αI ∼ 0.1, but the substitution 1H →
2D produces inverse isotope effect (αI < 0). This is consistent with the BCS theory,

but the origin is more likely to be the effect of lattice deformation.

In my opinion, to be honest, no one is quite sure about the mechanism of high-Tc su-

perconductivity in the organics. The simplest default option is that the organics are

somewhat BCS-like, but electronic effects may be competitive.
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5.3 Heavy fermions

Heavy fermions are actually the oldest class of exotic superconductors, discovered in

1979 [1]. Heavy fermion systems [2] are, in general, compounds which contain rare-earth

elements (usually Ce) or actinide elements (usually U, and Pt). Heavy fermions have an

extraordinary large specific heat even in the normal phase. In fact, the specific heat for

the heavy fermion systems is 10 to 100 times larger than “textbook” values of ordinary

metals: hence the name “heavy fermions”2. All these materials are three-dimensional,

and as far as I know, none of the heavy fermion material is strongly layered. This is

actually somewhat remarkable because, as we will see, all the other classes of exotic

superconductors really are strongly layered.

5.3.1 Normal-state behavior

For the normal-state behavior, there is a problem: at T ∼ 300 K, the behavior of the

heavy fermion systems, generally speaking, is quite different from that of textbook metals.

It is not even universal in the class. For example, the resistivity ρ(T ) looks metallic for

UPt3 [3], while they behave as semiconducting for most others. However, the following

property typically hold:

• χ ∝ 1/T

• T−1
1 = const.,

• CV = const.,

• neutron scattering showing a simple Lorentzian peak centered at T = 0,

where χ is the magnetic susceptibility, and T−1
1 is the NMR relaxation time, and CV is the

specific heat. For typical rare-earth or actinide elements in heavy fermion systems, such

as Ce3+ : 4f1,U
4+ : 5f2 , there are characteristic spare f -electrons. We would assume that

these f -electrons are fairy tightly bound. Then, it is attractive to think, with the above

properties in mind, a model with spare f -electrons of rare-earth or actinide elements,

crudely speaking.

As T is lowered, on the other hand, it seems that in all cases, a crossover to a Fermi-

liquid-like regime occurs3. In fact, at low temperature,

• CV = γT ,

• T−1
1 ∝ T ,

2Note that this large effective mass is seen not only in the specific heat, but also in other quantities
as well, in particular in the dHvA experiments.

3The temperature at which this crossover occurs depends on the system we are talking about. It can
be as high as 100 K, or as low as 5 K.
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• ρ ∝ A+BT 2,

where ρ is the resistivity. Note that the constant term in the resistivity comes from an

impurity scattering, while the T 2 term is what we get from electron-electron Umklapp

scattering4. These behaviors look much like those of a Fermi liquid, but what is special

to the heavy fermion system is that the coefficient γ in CV = γT is enormous, up to ∼
1600 mJ/mole K2 (CeCu6 [4, 5]) (contrast “textbook” metal, CV ∼ a few mJ/mole).

Hence the question for a normal state of the heavy fermion system arises: are we sure

this specific heat is due to mobile electrons or not (since we can get this linear specific heat

also from a localized electron)? I think that once the superconducting phase transition

occurs, then it is rather clear that it has to be that of mobile electrons, since the jump in

the specific heat at Tc is roughly the same as the BCS value. Thus, it is rather plausible

that the electrons contributing to the large specific heat in the normal state and those

forming the Cooper pairs in the superconducting phase are both mobile electrons, rather

than localized ones.

Thus, the heavy fermion system at low temperature behaves as a standard Fermi liquid,

but with the large effective mass. Note that this large effective mass is also confirmed

by the measurement of the large Pauli susceptibility χ, typically 10 to 1000 times larger

than that of textbook metals, and in the de Haas-van Alphen experiment.

We can imagine a naive model for the normal state as follows: suppose that f -electrons,

fairly tightly bound, form very narrow band, with its width ∆ ∼ a few K. For kBT � ∆,

all states in the band will be almost equally populated, which is equivalent to saying

that electrons are localized on lattice sites independently. Then, it behaves as χ ∝ 1/T ,

T−1
1 = const, and small CV. For kBT . ∆, we need a proper “band” picture with a large

m∗(∝ ∆−1), which seems to account for the crossover to a Fermi-liquid behavior with a

large effective mass.

At first sight, this argument sounds reasonable, and gives a good qualitative explanation

for the normal-state behavior. However, unfortunately, there is a rather important point

missing in it: it ignores the conduction (s or d) electrons. In fact, the conduction electrons

interact with f -electrons and in general have complicated effects, in particular the Kondo

effect [6, 7]. The Kondo effect occurs when we have conduction electrons moving in

the presence of a localized single impurity with spin. The tendency for the conduction

electrons and the impurity spin to form a singlet bound state gives rises to interesting

phenomena which are studied in a vast amount of literature. In the heavy fermion system,

the situation is much more complicated than this. The Kondo effect favors the singlet

state between the conduction and the localized f -electrons. On the other hand, there

is also the interaction between f -electrons mediated by a polarization of the conduction

electrons (RKKY interaction [8, 9, 10]), which favors a magnetic ordering of f -electrons.

4Note that the electron-electron scattering in a free space does not give us a finite resistivity, since
the momentum of colliding electrons, and thus the current must be conserved. In a crystal, however, the
total momentum of the colliding electrons can change by modulus of the crystal lattice vector by the
Umklapp process, so that it can have a resistivity of ∝ T 2.
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In fact, in many heavy fermion systems (even in some superconducting states), they show

an antiferromagnetism at T . 20 K.

5.3.2 Superconducting phase

General remarks

We can classify heavy fermion systems into four classes as follows:

1) No phase transition occurs down to T = 0 (e.g., CeAl3 [11]).

2) Show only a magnetic phase transition (e.g., CeCu6 [4, 5]).

3) Show only a superconducting transition (e.g., UPt3 [3], CeCu2Si2 [1], UBe13 [12]...).

4) Both magnetic and superconducting transitions occur (e.g., UPdAl3 [13], URu2Si2
[14], UGe2 [15, 16] ...). In this class, magnetic order and superconductivity coexist

(contrary to established “textbook” wisdom!).

The last class is, in some sense, the most interesting one. This is very surprising since

up to the 1970s, it is strongly believed, as a kind of dogma, that a magnetic order and

superconductivity cannot coexist. A qualitative reason for this, although it is a partial

one, is that the magnetic ordering occurs for tightly bound electrons, such as f -electrons,

whereas the superconductivity occurs for hybridized and delocalized conduction electrons.

In all cases known of the superconductivity in the heavy fermion system, the transition

temperature can be never larger than of the order of a few Kelvin5: Tc . 2 K. This is

actually quite remarkable because, as we have already seen and we will see further, there

are other classes of exotic superconductors where Tc is much higher.

As to the mechanism, the most crucial observation is that, as far as we know, no heavy

fermion superconductor shows any appreciable isotope effect. This strongly suggests,

although it does not actually prove, that the mechanism for the superconductivity is not

phononic but should be “all-electronic” one. I think that everyone would agree that,

whatever may be the case for the other exotic superconductors, the mechanism is not

phonon mechanism for heavy fermion superconductors.

Pairing states

The pairing states of the heavy fermion superconductors can be characterized by vari-

ous methods, such as low temperature behavior of the specific heat CV, nuclear relaxation

5In the class 4, TN ∼ 10-50 K. We also note that there is some exceptions for this estimate of Tc. For
example, PuCoGa5, which is normally regarded as a heavy-fermion system, has a transition temperature
Tc = 18.5 K.
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Table 5.1. Properties of some heavy fermion superconductors, determined from experi-

ments. AF stands for an antiferromagnetism, F for a feromagnetism, and P for a param-

agnetism. TN is the Nèel temperature.

System Magnetism Tc(K) Parity Gap nodes Comments

UPt3 [3] P 0.56 − X
CeCu2Si2 [1] P 0.65 +(?) X
UBe13 [12] P 0.9 −(?) X
UPdAl3 [13] AF 2.0 + X TN = 14.5 K

CeCoIn5 [17] P 2.3 + X probably dx2−y2

UNiAl3 [18] AF 1.0 − ? TN = 4.6 K

URu2Si2 [14] AF 0.8 − ? TN = 17.5 K

UGe2 [15, 16] F 0.6 − ? TCurie = 30 K (at point of max Tc)

rate T−1
1 , electronic thermal conductivity κel, Knight shift, upper critical field Hc2, sen-

sitivity of Tc to nonmagnetic scattering, or by an existence of multiple phases6. Some

representative heavy fermions and their (suggested) symmetries are shown in Table 5.1.

Note that for the heavy fermion system, the spin-orbit coupling is not negligible and

thus, we cannot separate the orbital and spin part as we did in BCS-like superconductors.

In fact, for rare earth elements such as U or Ce, the spin-orbit coupling is, in fact, very

large. In such a case, we have to classify them by the parity and time-reversal symmetry,

as we discussed in Sec. 4.4. We also note that there is no evidence for the violation of the

time-reversal symmetry in any heavy fermion, which is a rather interesting fact. Thus,

the only important symmetry seems to be the parity, and it differs for different materials.

Most of the heavy fermion superconductors, as we can see, do appear to have a node in

their gap, which can be seen, for example, by the power-law behavior of quantities such

as CV , or T
−1
1 at low temperatures. Thus, the form of the gap is, at least, not simplest. It

is conceivable that they are so-called extended s-wave superconductors, but it is generally

thought that these are indeed exotic superconductors. Beyond that, it is really not that

easy to say very much about the symmetries.

The thing I would like to comment on is that in Table 5.1 they do not appear to have

a lot in common apart from the fact that they are not simple s-wave. That is rather

surprising because, after all, they do have the normal state behavior in common, the

low temperature Fermi-liquid-like phase. However, when they go into a superconducting

phase, they seem to behave differently.

As for the magnetic properties, most of them are paramagnetic or antiferromagnetic.

There is one case, recently discovered, which is ferromagnetic: UGe2 [15, 16]. This is quite

surprising because it has been used to be thought that a ferromagnetism is inconsistent

6For a simple s-wave picture, it is fairly difficult to account for multiple phases, so if there are multiple
phases, it can be a strong evidence for the anisotropic pairing
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with a superconductivity. It looks like the order parameter has an odd parity, which

seems to be consistent with the ferromagnetism. An odd parity state suggests, crudely

speaking, that the Cooper pairs are mostly triplet, so that a strong magnetic field does

not suppress the spin-triplet pairing.

Note that not all of these have been entirely settled down. In fact, for example a

superconductivity of UGe2 is found around 2000 [15, 16], and there are a lot of work even

recently.

5.4 Strontium ruthenate: Sr2RuO4

5.4.1 History

For the cuprates, the superconductivity starts to occur at the transition temperature

up to Tc ∼ 150 K [19, 20]. Typical crystal structure of the cuprates is illustrated in

Figs. 5.5 (a) and (b). There are characteristic CuO2 planes, and between them there are

lanthanoides. The off-plane oxygens are different from the in-plane ones in that they are,

in some sense, not directly connected to the superconductivity. It does seem rather clear

that the CuO2 planes are essential to the high-Tc superconductors. For all superconductors

without CuO2 planes, Tc is below 100 K. Therefore, at the moment when the cuprates

were discovered, people started asking whether it is essential to have Cu, or we can replace

it by other elements. An obvious replacement with Au, Ag did not work.

The crystal structure for Sr2RuO4 is shown in Figs. 5.6 (a) and (b). As we can see, it

is extremely similar in its structure to the cuprates: the only differences are firstly that

the Cu atom is replaced by Ru, and secondly the spacer is not Ba, but Sr.

It turns out, however, that the normal-state behaviors of Sr2RuO4 are quite dissimilar

from those of cuprates. In addition, the transition temperature is quite different. For

La2−xBaxCuO4 Tc ∼ 40 K, while it turns out that Tc ∼ 1 K for Sr2RuO4 regardless of

Typical (original) cuprate : La2−xBaxCuO4 (Tc ∼ 40 K)

(a)
(b)

Fig. 5.5. (a) Crystal structure of cuprates for ac-plane (side view). (b) Crystal structure

of cuprates for ab-plane (top view).
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Sr2RuO4

(a) (b)

Fig. 5.6. (a) Crystal structure of Sr2RuO4 for ac-plane (side view). (b) Crystal structure

of Sr2RuO4 for ab-plane (top view).

the optimistic hope that we would get a high-Tc superconductor from its similarity in the

crystal structure.

5.4.2 Experimental properties of Sr2RuO4

We briefly review some important experimental properties of Sr2RuO4. For more de-

tails, see Ref. [20].

Normal Phase

In the normal state for Sr2RuO4, below T ∼ 25 K, it appears to behave as a Fermi

liquid in all three directions. Thus, the specific heat is a combination of the contributions

from the electronic and phonon parts

CV ∼ γT + βT 3. (5.5)

For the susceptibility, we observe the Pauli susceptibility:

χ ∼ const. (5.6)

For both the ab-plane and c-axis, the resistivity is

ρ ∼ A+BT 2, (5.7)

which is a characteristic form for a coherent Bloch wave transport limited by the impu-

rity and electron-electron Umklapp scattering: the first term comes from the impurity

scattering, while the second term from the Umklapp scattering. The value ρab itself is

considerably smaller compared with that of the cuprates, ρab ∼ 1µΩ cm. This means that

the samples are very pure systems, and indeed it turns out that one can make a very pure

sample of Sr2RuO4.
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Table 5.2. Some of the Fermi liquid parameters for Sr2RuO4. Note that the me is the

bare electron mass, while mband is the band mass.

α-band β-band γ-band

kF (Å
−1
) 0.3 0.6 0.75

m∗/me 3.3 7.0 16.0

m∗/mband 3.0 3.5 5.5

Another important feature of Sr2RuO4 is that it is a strongly anisotropic Fermi liquid.

In fact, ρc/ρab ∼ 103, and this is comparable to those of typical cuprates. This strong

anisotropy can be also seen in its band structure. We can reconstruct the Fermi surface

from the de Haas-van Alphen kinds of experiments7, or we can calculate the band structure

by the local density approximation (LDA). Both of them suggest that the Fermi surface

consists of three strongly two-dimensional sheets: one hole-like sheet (called α-sheet), and

two electron-like sheets (β- and γ-sheets). This is what we may expect from the strong

anisotropy in the resistivity, which indicates that the hopping matrix element along the

c-axis is far smaller than that for the inner-plane hopping. In fact, the deviation from the

ideal two-dimensional Fermi surface is fairly small, of the order of ∼ 1%.

The behavior of electrons for each of the sheets is shown in Table 5.2. The Fermi

momentum is of the order of a typical value, and it is not so much an exciting value. The

effective mass is several times larger than the band mass, which is estimated by neglecting

the electron-electron interaction and just solving an one electron problem. This indicates

that electrons are strongly correlated, although it can be well described by the Fermi

liquid.

Superconducting phase

People have expected that the transition temperature for Sr2RuO4 would be as high as

those of the cuprates, but it turns out that Tc is not so high, although it does undergo a

superconducting phase transition. The transition temperature for Sr2RuO4 is only about

1.5 K, and in that sense it was disappointing.

It turns out, however, that the susceptibility appears to be χ ∼ const. in the super-

conducting state for all directions, which seems to indicate a triplet ESP state. I think

this is fairly firm, and most people believe that the superconducting state of Sr2RuO4 is

indeed a triplet ESP state.

7Although there are various ways to measure the band structure, if we are faced with some new
materials and want to figure out what their band structures are, the most reliable way is the de Haas-van
Alphen kinds of experiments, measuring a quantum oscillation with respect to the external magnetic
field.
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Deviation from perfect
cylinder(a) (b)

Fig. 5.7. (a) Crystal structure of Sr2RuO4. (b) Schematic illustration of the Fermi surface

of Sr2RuO4.

With that in mind, let us suppose that the order parameter of Sr2RuO4 is indeed of

the ESP form:

F (k; σ1, σ2) = F (k; σ1, σ2) = f(k)(| ↑↑〉+ | ↓↓〉). (5.8)

A crucial question arises: what is the orbital wave function of the pairs f(k)? Since it is

a spin-triplet state, it has to be an odd parity state. This does appear to be consistent

with some Josephson experiments, where it is shown that the order parameter seems to

change its sign if we reflect it.

The most interesting question is whether the order parameter is real or complex. In

the real case, such as f(k) ∼ kx, the time-reversal symmetry is not broken. On the other

hand, if it is complex, for example f(k) = kx+ iky
8, it can be broken. In the BCS theory,

we know a priori, that the amplitude of order parameter |OP|2 want to be as uniform as

possible over the Fermi surface, although this is not always the case in a more general

theory9.

It turns out that there are various experiments which are in favor of the time-reversal

symmetry broken order parameter. Some of the experiments are as follows:

• Muon spin rotation

In the muon spin rotation experiment, we essentially measure an effective magnetic

field where the muon is sitting after it is trapped to somewhere. Generally speaking,

in the normal state under a zero external magnetic field, the muon sees indeed no

local magnetic field. If, on the other hand, we have a system where the time-reversal

symmetry is spontaneously broken, then you would expect to see that the muon spin

rotates, and indeed we will see it. What is peculiar for Sr2RuO4 is that the signal of

8This state has an angular momentum along z-axis, and you can easily see that the time-reversal
symmetry is broken.

93He is one counterexample for this, where we could not exclude the possibility for the polar phase,
which does not breaks the time-reversal symmetry.
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the time-reversal symmetry breaking starts to appear at the superconducting phase

transition [21]. This experimental fact suggests that the time-reversal symmetry is

spontaneously broken in the superconducting state.

There is one worrying factor there: the direction of the local magnetic field. An

obvious option for this is in the direction along the symmetry axis, that is along the

c-axis. However, this is not the case, and in fact we have a finite component in the

ab-plane. This is what remains to be understood.

• Magnetic field dependence and telegraph noise in Ic of Josephson junc-

tions interpreted in terms of switching of domains.

If the time-reversal symmetry is broken as kx + iky, there is also an equal pos-

sibility for having kx − iky state. There is an argument based on a macroscopic

electromagnetic effect that it is likely to have various domains of them. Experimen-

talists interpreted the telegraph noise in Ic of Josephson junctions as the switching

between these two states [22].

• Kerr effect in zero magnetic field.

Kerr effect is a measurement of the rotation of the polarization of the light when it

passes through the material. If this rotation occurs, that is again a direct evidence

of the time-reversal symmetry breaking. An experiment has observed the rotation

and has confirmed this time-reversal symmetry breaking [23].

So far, so good. For an “ideal” kx + iky state, the energy gap has no node |∆| ∼ |F | ∼
const., so that the number of quasi-particles for T � Tc should be exponentially small.

This should be seen in the measurement of the specific heat, thermal conductivity and

so on. However, unfortunately what we find is a power-law behavior for most of these

quantities. Whether this power-law is due to the existence of nodes in the gap is somewhat

controversial. In principle, there is a critical test for this: Josephson junction test (see

Fig. 5.8), which I shall talk in more detail in Sec. 7.4.

Sr2RuO4

Al

Fig. 5.8. Schematic illustration of the Josephson experiment.
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5.5 Ferropnictides

Ferropnictides are discovered in January 2008 [24]; please note that much experimental

data may not be definitive10.

5.5.1 Composition

There are two major elements, each containing a transition metal (usually Fe) and a

pnictide, element in nitrogen column of periodic table (usually As). We have two main

classes of parent compounds:

1111: (RE)(TM)(PN)O (example: LaFeAsO)

122: (AE)(TM)2(PN)2 (example: BaFe2As2)

where RE=rare earth, TM=transition metal, PN=pnictide and AE=alkaline earth. To

realize superconductivity at high temperature, one has to dope carriers into the system; for

example, LaFeAsO1−xFx for 1111, and Ba1−xKxFe2As2 for 122. The third class is LiFeAs,

FeSe (11 system), etc. Most works on (1111) in this section refer to LaFeAsO1−xFx.

5.5.2 Structure (1111 compounds)

The left figure in Fig. 5.9 shows the lattice structure of LaFeAsO. This material is

composed of LaO layers and FeAs layers. Crudely speaking, the valence state in the

parent compound is probably (La3+O2−)+(Fe2+As3−)−; La3+ and O2− have doubly closed

shell, Fe2+ has 3d6, and As3− has closed shell. In some sense, it looks like the iron is

oxidized, while Fe 3d and As 4p orbitals hybridize. If we substitute fluorine for oxygen,

the embedded extra electron moves to the FeAs layer; if one substitutes by 10 percent

(LaFeAsO0.9F0.1), the carrier density is ∼ 1021 cm−3, which again is comparable to that

of cuprates.

One interesting thing about the iron-arsenide compounds is that they obviously have

various things in common with the cuprates. The most important point is the strong

two-dimensionality of the system. Another thing they have in common is the charge

reservoir, the atoms which originally supply an extra charge. In LaFeAsOF, for example,

the fluorines are substituted with the oxygens in the LaO planes, and they supply the extra

charge. On the other hand, superconductivity itself almost certainly occurs in metallic

FeAs layers. The charge reservoir is separated from the layers where superconductivity

occurs. That again we see is characteristic of the cuprates. 1111s are electron-doped,

which means the compound has surplus electrons, while 122s are hole-doped; this fact is

interesting in comparison with the cuprates.

10For a review of high-temperature superconductivity in ferropnictides, see Ref. [25].

91

《講義ノート》



A. J. Leggett LEC. 5. NON-CUPRATE EXOTIC SUPERCONDUCTIVITY

Fig. 5.9. Lattice structures of ferropnictides.

5.5.3 Phase diagram

Figure 5.10 (a) shows the phase diagrams of ferropnictides. The parent compounds are

antiferromagnetic metal. In case (a), the crystallographic phase transition appears slightly

over the antiferromagnetic phase transition. In case (b), the 1st order phase transition

exists at the doping level p = 0.05, where the doping per unit formula p is equal to the

stoichiometry x in this case (see Sec. 6.2 for more details). The carrier doping suppresses

the antiferromagnetic order, and superconductivity appears at the doping level x ' 0.05.

In case (a), near x ' 0.05, the superconductivity and antiferromagnetism coexist at low

temperature, while in case (b) there is no coexistence. The dependence of Tc on doping

is weak; maximum in Tc(x) at x ∼ 0.12-0.15 is shallow.

The phase diagrams of ferropnictides look quite similar to that of the cuprates (Fig. 5.10

(b)). One also has a superconducting dome and an antiferromagnetic phase where the

carrier density is low. However, there are clear differences. In the cuprates, as we shall see

later, the antiferromagnetic phase is not a metal but rather a Mott insulator. Furthermore,

in the underdoped region, an anomalous pseudogap phase exists.

5.5.4 Experimental properties (normal state)

• CV ∼ αT + βT 3,

• χ ∼ A+BT ,

• ρ (DC conductivity) ∼ A+BT 2,

• Hall coefficient ∼ A+BT .

92

《講義ノート》



A. J. Leggett LEC. 5. NON-CUPRATE EXOTIC SUPERCONDUCTIVITY

0.05 0.05

 AF
 metal

 AF
 metal

 S  S

Normal
metal

Normal
metal

Crystallographic
transition

 p  p

(a)

 AF
 S

 SG

 UD

 OD

 optimal
 doping

(b)

 p

Fig. 5.10. (a) Phase diagrams of ferropnictides. (b) Phase diagram of the cuprates.

What are the properties of the normal phase? Crudely speaking, the specific heat CV

has the electron contribution αT and the phonon contribution βT 3. The susceptibility χ

has a constant A plus BT . For the DC conductivity, so far, the anisotropy of resistivity

has not been measured carefully. People have measured a parent anisotropy rate, but

it is indirect and not totally reliable. Since this is a quite delicate point, it is advisable

to check up the up-to-date literature. For some reasons it seems difficult, at least to

date, to prepare these metals in a large single crystal form, and there has not been any

anisotropy measured. However, overall, the DC conductivity in the ab-plane is given by

A+BT 2, where A is typical of impurities and B of the electron-electron Umklapp process.

Furthermore, at room temperature, the DC resistivity is ∼ 3 mΩ, which is comparable to

that of cuprates. The Hall coefficient goes like A+BT , and its value is not dramatically

different from textbook values.

5.5.5 Band structure

What about the band structure? If one performs angle-resolved photoemission spec-

troscopy (ARPES), quantum oscillation experiments, and the local density approximation

(LDA) calculation, one finds the Fermi surface shown in Fig. 5.11 (a). Two holelike Fermi

surfaces, which are not qualitatively different, are around the Γ point (0,0); two electron-

like Fermi surfaces are around the M point (π, π)11 (be careful about notation!). There is

also one fairly 3D band around Γ point.

There is one important point here. In 1111 systems, the Fermi surface is quite two-

dimensional (barrel-like), while in 122 systems, it is much more three-dimensional. This

suggests that the Fermi surface changes its shape along the z-direction (Fig. 5.11 (b)).

Additionally, magnetism is much stronger in 122.

11The number of Fermi surfaces varies depending on compounds, carrier concentrations, etc.

93

《講義ノート》



A. J. Leggett LEC. 5. NON-CUPRATE EXOTIC SUPERCONDUCTIVITY

M

electronlike

holelike

 2D  3D
 (1111)  (122)

(a) (b)

Fig. 5.11. (a) Fermi surface of ferropnictides. (b) Fermi surfaces in three dimensions.

5.5.6 Superconductivity

When I asked if a metal containing iron could be a good high-temperature supercon-

ductor, in the past most people answered in the negative. In fact, iron does have magnetic

moment ∼ µB as is measured by neutron scattering, and this magnetic moment would be

destructive to superconductivity. However, the ferropnictides show superconductivity; Tc
rises up to ∼ 56 K in (doped) 1111, 38 K in 122, 20 K in 11. We also note that Tc is only

weakly dependent on the carrier concentration x (e.g., LaFeAsO1−xFx).

5.5.7 Experimental properties (superconducting state)

All ferropnictides are strongly type-II, with extrapolated Hc2(0) ∼ 55T. This value

exceeds the Chandrasekhar–Clogston limit. The anisotropy is relatively small (∼ 2-

3). The zero-temperature penetration depth and the zero-temperature pair radius are

λab(0) ∼ 1600-2400 Å, and ξab(0) ∼ 20 Å, respectively. ARPES shows that, on all sheets,

the superconducting gap is only weakly k-dependent.

What about the low-temperature behaviors of NMR and the penetration depth? Un-

fortunately, again experimental data in the literature are mutually inconsistent, but favor

power law. Importantly, the Knight shift goes to zero as T → 0 for all directions of

magnetic field; this fact strongly indicates spin-singlet pairing. Isotope-effect experiments

are mutually inconsistent, but most recent ones give a small value of αI; this suggests that

the mechanism is probably non-phonon.

Another reason why people tend to believe rather strongly it is not a phonon mech-

anism is that by now the actual theoretical techniques for calculating electron-phonon

superconductivity are pretty well evolved. Most experts in this area are fairly confident

that phonon mechanism by no means gives the critical temperature 55 K.
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5.5.8 Pairing state

The Knight shift fairly strongly suggests the singlet spin state. Since the crystal has

a tetragonal symmetry, main candidates are nodeless s-state and dx2−y2-state with nodes

along the diagonal directions. We will come back to this point much more in detail in the

context of cuprates. ARPES data suggests nodeless state, i.e., s-wave state. At low or

zero temperature, however, various quantities such as T1 and λ favor nodes.

Again, the extra complication is that in this case there are several bands, which causes

the second Fermi surface. There is no particular reason why the gap must have the same

sign on all sheets of the Fermi surface. Theory based on spin-fluctuation mechanism

(most obvious non-phononic mechanism) predicts that the gap changes sign between the

electronlike and holelike sheets (s±-wave). Experimental evidence claimed in favor of this

assignment: Josephson-like experiment on polycrystalline sample shows half flux quanta

[26], which is characteristic to s± state. STM again showed indirectly that s±-state is

favored [27]. Unfortunately, there has been no true Josephson experiment yet; one needs

more carefully prepared single crystals. We may have them in the future.

Since ferropnictide superconductors have only 3-years history right now12, one needs

more time to settle the mechanism of the pairing state. One thing I could say pretty sure

is that it is spin-singlet. Beyond that, we have yet to answer.

12This lecture was done at The University of Tokyo in 2011.
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Lec. 6 Cuprates: generalities, and

normal state properties

When the cuprate superconductors were originally discovered in 1986, it was a great

surprise; they were the first materials to show reproducible superconductivity above 100

K. We know that at least 300 cuprates are superconductors and many of them, several

dozens, actually have transition temperatures Tc ∼ 110-120 K. One important point is

that, though most cuprate materials are superconductors often with very high transition

temperatures, there is a small class of cuprates which does not show superconductivity

under any condition.

6.1 Basic chemical properties

6.1.1 Composition

The chemical composition of the cuprates is very characteristic and typical. We here

introduce a very natural (but unconventional) notation:

(CuO2)nAn−1X (e.g.,YBa2Cu3O7−δ; n = 2, A = Y, X = BaCuO3−δ)

A(intercalant) = alkaline earth elements (or rare earth elements, Y or La)

X(charge reservoir) = combination of elements, always including O

This notation reflects a characteristic structure of the cuprates.

6.1.2 Structure

Figure 6.1 (a) shows the side view of the cuprates with n = 2, in which we can see

that there are two copper oxide planes. Between them there are various materials X,

which always contain oxygens, and these oxygens are frequently called apical oxygens.

The reason for this nomenclature is that if we consider the positions of the apical oxygens

in the three-dimensional picture they sit in the apices of the octahedron with the oxygens

included in the CuO2 plane. The intercalants A sit between the planes in the case of more

than one copper oxide planes per unit cell.

A rather important characteristic of the cuprate superconductors is that we very often

find homologous series. The homologous series is a sequence of materials with the same
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(a) (b)

Fig. 6.1. (a) Side view of cuprates with n = 2. (b) Top view of cuprates with n = 2.

intercalant A and the same charge reservoir X but with a different number of layers (e.g.,

Tl2Sr2CuO6, Tl2Sr2CaCu2O8, Tl2Sr2Ca2Cu3O10,· · · ), which is schematically shown in the

Fig. 6.2 (a).

The superconductivity in the cuprates occurs in the neighborhood of what is called

parent compounds. We can often start (for a given X) with a stoichiometric compound

(“parent” compound) when valences balance, i.e., the total charge becomes neutral;

La2CuO4 = (La3+)2Cu
2+(O2−)4,

YBa2Cu3O6 = Y3+(Ba2+)2(Cu
2+)2Cu

+(O2−)6.

The state of the copper in the plane is Cu2+: the copper starts with a (3d10)(4s)1 electron

state and loses two electrons and then becomes a 3d9, so that there is one hole in the

d-shell per formula unit. This is typical for all the parent compounds of the cuprates.

If we have a structure of this type, then we have an odd number of electrons per unit

cell. Naively thinking, the system ought to be a metal. However, the system becomes an

antiferromagnetic Mott insulator (Fig. 6.2 (b)): the electrons are localized at the copper

atoms and order antiferromagnetically.

6.2 Doping

Suppose one starts with a “parent” compound, say La2CuO4, and replaces a fraction x

of La with Sr per unit cell, i.e.,

La2CuO4 → La2−xSrxCuO4.

Since La has valence 3+ and Sr has 2+, the effect of this replacement is to add −x
electrons, i.e., x holes, per formula unit. In this case, the holes have nowhere to go but

to the CuO2 plane, and hence we are fairly confident that p, the doping per CuO2 unit,

is equal to the chemical stoichiometry x.
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(a) (b)

Fig. 6.2. (a) Homologous series. (b) Antiferromagnetic Mott insulator.

Alternatively, let us consider adding δ oxygen atoms per formula unit,

La2CuO4 → La2CuO4+δ.

In this case, since the valence of O is 2−, the effect is to add 2δ holes per CuO2 unit, i.e.,

p = 2δ. In multiplane materials (n > 1), one must remember that any added holes have to

be shared between the n planes per unit cell. Hence, naively, for example YBa2Cu2O6+δ,

we expect p = 1
2
(2δ) = δ. However, in this case there are other complications because

the added holes can go elsewhere than to the CuO2 planes (e.g., in the “chains”). The

chains are very specific for this compound, and then this is a complication special to this

material.

Fig. 6.3. Hybridization

of the orbits.

What can we guess about the orbit(s) occupied by the

holes in the CuO2 plane? There is a general belief based

on the quite reliable band structure obtained from atomic

physics calculations; both the original one hole per CuO2

unit in the parent state and any added holes by the doping

occupy mainly the 3dx2-y2 orbital. However, this orbital may

be somewhat hybridized with the px or py states on the

neighboring oxygens (Fig. 6.3).

A vast majority of the cuprate superconductors are hole-

doped; if we start from the parent compound we add not

extra electrons but extra holes. However, there are also

a few electron-doped cuprates. The best known electron-

doped cuprates is NCCO (Nd1−xCexCuO4). Properties of the electron-doped materials

are qualitatively very similar to the hole-doped ones [1, 2].
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Fig. 6.4. Phase diagram of cuprates. The doping dependence is universal, and the tem-

perature dependence (i.e., Tc,max) is strongly material-dependent.

6.3 Construction of phase diagram

There are various factors controlling the interesting behavior of the cuprates, but the

two most important ones are temperature T and the number of holes p per CuO2 unit in

the plane. How do we fix p? There are two possibilities:

(a) All added holes are known to go to CuO2 planes (e.g., La2−xSrxCuO4).

(b) The destination of the added holes are ambiguous (e.g., YBCO).

In the former case, we can simply fix p from x (or δ). However, in the latter case, we

should fix p pragmatically. In most cases, what one usually does in practice is, if there

exists another cuprate corresponding to the case (a) and an accessible region in the phase

diagram has some overlap with it, we fix p so that we get the same p-dependence. This is

important because there is no cuprate which can be explored in the whole range of p that

is interesting to us. Therefore, we have to overlay different materials in the phase diagram.

This might seem to be a little bit skew, but so far this is consistent with experiments.

Phase diagram of the cuprates

The phase diagram of the cuprates is shown in Fig. 6.4. As one goes from a Mott

insulating parent compound to small values of the doping p, it remains antiferromagnetic.

However, at the doping p ' 0.04, the system comes into a mysterious phase, usually

thought of a spin glass phase. Then the superconducting phase appears roughly between

0.05 < p < 0.27. To some extent, this universality of the p-dependence is a matter

of construction because we simply decided to measure p so that the p-dependence is

consistent. At least everything goes well and is consistent in this way; the p-dependence

is universal and always the superconducting dome starts at p = 0.05 and terminates at

p = 0.27. On the other hand, the dependence on the T -axis is rather non-universal;

for Bi-2201 Tc,max ∼ 10 K, while for Hg-2223, one with the highest Tc, the transition
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Fig. 6.5. T ∗-line: locus of “crossover” behavior in various experimental quantities (CV ,

χ, ρc,· · · ).

temperature can be as large as Tc,max ∼ 160 K under 20 GPa. This problem is a huge

mystery.

In the region p > 0.27, superconductivity does not appear and the system is well

described by the genuine Fermi-liquid theory. On the other hand, in the region 0.04 <

p < 0.05, it is far from the Fermi-liquid state.

Here is an interesting question: let us consider a virtual path in the phase diagram which

goes above the superconducting dome and connects these two regions (the dotted arrow in

Fig. 6.5). Is there any point of a phase transition or any steep crossover? Apparently, there

is no actual phase transition, but there is a so-called T ∗-line. This roughly corresponds

to a relatively sharp crossover line.

Although there is much controversy, most people claim that the Fermi-liquid region

first changes to the strange metal region, and the pseudogap regime appears between the

antiferromagnetic phase and the superconducting dome. Roughly speaking, there is a

sharp crossover in various physical quantities between the strange metal regime and the

pseudogap regime.

There are some interesting and controversial questions related to this T ∗-line. The first

one is about the property of the T ∗-line;

1. Does it really correspond to a hidden phase transition not seen apparently or just a

crossover?

Another one is about the low-T behavior;

2. Does the T ∗-line (i) intersect the superconducting dome, or (ii) join smoothly onto

the Tc(p) line?

This question has arisen because it was very difficult to change p until quite recently. Now

there is an argument which strongly favors the option (i) [3].
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Table 6.1. Transition temperatures of various homologous series.

Common name X group n=1 2 3 4 5

Hg-12,n− 1, n HgBa2O3+δ 98 126 135 125 110

Tl-22,n− 1, n Tl2Ba2O4 95 118 125 112 105

Tl-12,n− 1, n TlBa2O3−δ 70(?) 103 123 112 107

Pb-22,n− 1, n PbSr2O3+δ ∼40 97(?) 122 107

Bi-22,n− 1, n Bi2Sr2O4 10-20 89 107

6.4 Determinants of Tc

As noted, Tc,max varies enormously between different cuprates. What else determines

Tc other than the doping p? Correlations with

• the degree of the orthorhombic anisotropy,

• the degree of buckle of the planes,

• the distance to apical the oxygens,

• the chemical environment of the planes,

have been suggested, but none of them is “overwhelming”. On the other hand, in the

homologous series, we can see a universal dependence of the maximum transition temper-

ature Tc,max on the number of CuO2 planes n, as shown in Table 6.1. As n goes to two

from one and to three from two, Tc,max also goes up. Beyond n = 3, Tc,max decreases as n

increases. Note that there is often a relation ∆Tc(2−3) ' 1
3
∆Tc(1−2).

I think probably it is not significant that Tc falls beyond n = 3. For all different

members in the homologous series, we need to dope all of the planes, and if we get too

many planes then they are just run out of the doping. Therefore, I suspect that the

feature of the drop in Tc beyond n = 3 may be rather trivial.

There is one digression I just want to make about “the dogs which did not bark in the

night-time”. This refers to the class of the cuprates which never become superconducting.

There is a little-noticed fact that I think very interesting; without exception, all of these

non-superconducting cuprates are either bi/tri-layer with alkaline-earth spacers (Sr, Ba)

which are heavier than Ca. I think this is not due to the basic effect of the replacement

Fig. 6.6. Schematic illustration of the intruder O atoms.
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Table 6.2. Notable features of various cuprates.

Compound Common name Notable features

La2−xSrxCuO4 LSCO (almost) earliest HTS, large crystals

YBa2Cu3O6+δ YBCO first liquid-nitrogen temperature supercon-

ductors whose Tc ∼ 90 K, “E. coli” of

cuprates

Bi2Sr2Can−1CunO(n+2+δ) BSCCO “baklava”, good for ARPES, EELS, etc.

most anisotropic high-Tc superconductor

known.

HgBa2CunCan−1O2(n+1) HgBCO record holder for Tc(∼ 160 K at 20 GPa).

Nd1−xCexCuO4 NCCO electron-doped

Ca1−xSrxCuO2 ∞-layer no reservoir group X, infinite set of CuO2

planes seperated by alkaline earth ions

Ca/Sr.

of Ca with Sr or Ba, but rather due to the effect of what I call the “intruder” oxygens.

This is shown schematically in Fig. 6.6.

Let us start from the bilayer La compound where the intercalant is Ca. This is a

superconductor with Tc ∼ 55-60 K. Then, we replace Ca by Sr, which is slightly bigger

than Ca. The larger Sr intercalant atoms widen the distance between the CuO planes,

and the oxygens are more likely to enter the aperture between the copper oxide planes,

which depresses the transition temperature Tc. However, no one knows the reason why

the intruder oxygens are so destructive to superconductivity.

6.5 Other remarks: carrier density and list of cuprate

superconductors

At the “optimal” doping (p ' 0.16), the density of the (extra) holes in the plane is

about 1.5 × 1014 cm−2. Hence the three-dimensional density is around 1-2 × 1021 cm−3

and interestingly that is quite comparable to strontium-ruthenates, ferrropnictides,· · · .
This is rather interesting, since the high-temperature superconductivity does seem to

require a rather low electron density.

Before we go into experimental techniques for the cuprates, here we list some interesting

cuprates in the Table 6.2.
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6.6 Experimental properties of the normal state: gen-

eral discussion

First of all, unlike most of the other superconductors we are familiar with, the properties

of the cuprates do seem to be very strongly dependent, not just on the doping, but on

the impurities. For example, if we deliberately put Zn into a place of some of the copper

in the CuO planes, this in fact has an enormous effect on the superconductivity. In the

early days, arguments about some of the early experiments were completely spoilt by the

impurity effect. We have to always bear in mind that, in particular with new experimental

techniques, the experimental facts presented here are subject to revision.

Secondly, it is easy to vary temperature T at a fixed doping p, but it is much more

difficult to vary p at a fixed T . Quite recently, people have started taking up a new kind of

techniques; they prepare thin films of the cuprates, and then try to dope them electrically.

However, one has to be cautious because the doping in this case only extends to the first

few layers, and we may be probing the surface property rather than the bulk property.

Thirdly, many types of experiments can only be done on particular cuprates. For

example, the ARPES is typically done on BSSCO and YBCO, and the neutron scattering

on LSCO and YBCO. We always have to bear in mind that even if we have measured

some spectacular properties on one cuprate, we are not sure whether they apply to all.

Generally speaking, people tend to assume it does, but there is no warranty and sometimes

naive application is quite dangerous.

It turns out that some regions of the phase diagram are relatively conventional. First,

the least controversial phase is the Mott antiferromagnetic insulator phase in the low-

doping region. Our knowledge suggests that this is just a standard antiferromagnetic

insulator described by the nearest-neighbor Heisenberg Hamiltonian

Ĥ = J
∑
〈ij〉

Ŝi · Ŝj, (6.1)

with Jin-plane ∼ 1000 K and Jbilayer ∼ 200 K. This is consistent with experimentally

observed TN ∼ 300 K at p=0 for LSCO, 500 K for YBCO. YBCO has a higher Nèel

temperature than LSCO, probably because YBCO has two CuO layers, while LSCO has

only one.

Second, in the overdoped regime again, most people agree that the system is approx-

imately a standard Fermi liquid; the system becomes more conventional as one dopes

more in the overdoped regime. Finally, in the narrow spin-glass region of the doping

0.04 < p < 0.05, a few experiments suggest the resistivity ρ(T ) increases without limit as

one decreases the temperature; if one could reach T = 0, which is impossible in real life,

the system would be a perfect insulator. This behavior is rather similar to what we find

in disordered granular films.
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6.7 Experimental properties at the optimal doping

6.7.1 Electronic specific heat

Let us move on to the controversial regimes. First of all, let us consider the optimal

doping p ∼ 0.16, where Tc takes its maximum value. What about the thermodynamic

properties? It is known that the electronic part of the specific heat behaves as Cel
V = γT

at least up to the room temperature [4]. The coeffcient γ per CuO2 unit is about γ ' 6.5

mJ/mol(CuO2)K
2, which is almost the same for LSCO, YBCO, and Tl-2201. If one

interprets the value with the Fermi liquid theory, the density of states is given by

N(0) ' 1.4 eV−1spin−1(CuO2 unit)−1. (6.2)

This value is about four times the two-dimensional free electron value ma2/2π~2. The

specific heat above Tc does appear to be consistent with the Fermi liquid model with the

mass enhancement m∗/m ∼ 4. Given the tight-binding structure of the cuprates, this

mass enhancement seems quite reasonable.

6.7.2 Magnetic properties

The Pauli spin susceptibility χ, determined mostly from the Knight shift on YBCO,

is approximately independent of T [5]. There is one interesting point here; the in-plane

Knight shift for Cu is much larger than that for Y or O. This is significant for people

who believe in the spin fluctuation theory. The nuclear spin relaxation rate T1 is inversely

proportional to the temperature, i.e., T−1
1 ∝ T , which is known as the Korringa relation.

So far, all the properties of the normal phase at the optimal doping appear to be pretty

much Fermi-liquid like.

6.7.3 Transport

Cuprates are very strongly layered materials. Almost all the transport properties are

strongly anisotropic. Quoted results below are values in the ab-plane unless otherwise

stated [5, 6].

If one measures the DC resistivity of the cuprates at the optimal doping, all the cuprates

have ρ ∝ T from T ∼ 800 K all the way down to Tc (down to T ∼ 10 K for Bi-2201).

Above 800 K the situation becomes more complicated because the oxygens get disturbed,

and thus one usually does not think about that regime. Except for this high-temperature

regime, the resistivity appears to be exactly linear to the temperature, which is quite a

remarkable fact.

What happens if one goes away from the optimal doping? It turns out that the resis-

tivity generally behaves as ρ ∝ Tα, where α varies continuously. In the overdoped limit,
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α = 2, which is consistent with the Fermi-liquid theory if the electron-electron Umklapp

scattering is taken into account. If one moves from the overdoped regime to the optimal

doping regime, α changes from 2 to 1. If one moves further into the underdoping regime,

α becomes smaller than 1 and finally less than 0.

If one thinks about the conductivity rather than the resistivity, since the conductivity

is simply a sum of contributions from different planes, one can define the conductivity

per CuO plane. One obvious question is whether this value is universal for all cuprates.

The answer is generally no. However, for higher-Tc materials, the resistivity per plane,

i.e., the inverse of the conductivity per plane, seems to be approximately universal

RR.T. ∼ 3 kΩ ∼ 0.12RQ, (6.3)

where RR.T. and RQ are the resistivity at the room temperature and the quantum universal

resistance, respectively1. In the lower-Tc materials, on the other hand, the conductivity,

in general, is much smaller. This may be rather trivially understood from the following

argument: almost universally2 in all lower-temperature cuprates, the dopants sit close to

CuO2 planes. Therefore, they provide extra scattering mechanisms.

Can the ρ ∝ T law at the optimal doping be explained by the phonons? It is well

known that at least at high temperatures, ordinary metals are described by the Fermi-

liquid theory and show a linear-T dependence for T & ΘD. This resistivity is caused by

the scattering of electrons by phonons. Is this what is going on at the optimal doping?

Almost certainly not. First of all, the Debye temperature of most cuprates is typically

about the room temperature, but the linear behavior is still exactly linear down to far

lower temperatures than the Debye temperature3. Furthermore, in a naive calculation

based on what we know about the phonon spectrum and the electron-phonon coupling

in the cuprates, it looks as if the phonon contribution should give us a resistivity larger

than this. Thus, the phonon mechanism seems to be unable to explain the linear law, and

something more subtle is going on here.

As for the AC conductivity σ(ω), on the other hand, the following Drude form is well

known for ordinary metals

σ(ω) ∼ ne2τ/m

1 + iωτ
. (6.4)

We can therefore ask whether the resistivity of cuprates fits well with this formula. The

answer is yes, only if the relaxation time τ is allowed to be a function only of ω, with the

behavior

τ(ω) ∼ max(ω, kBT/~). (6.5)

1In in two dimensions, the resistivity has the same dimension as the resistance.
2Bi-2201 seems to be a special exception.
3One should be cautious here; it is known that in some textbook metals like Re, the linear law of

resistivity persists well below ΘD. Re has the Debye temperature 300 K and the linear behavior persists
down to 75 K. Thus even if the linear behavior is observed down to a far lower temperature than the
Debye temperature, it is not a sufficiently convincing argument against phonons.
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The early model of the normal state of cuprates, the so-called marginal Fermi liquid

theory, is essentially based on the same assumption.

For the Hall angles for pure samples in the high-field ∼ 8 T, one normally finds

cotΘH ∝ T 2. (6.6)

A rather odd thing to be remarked; if one plots the thermoelectric power at low tempera-

tures, it does not look so spectacular. If one plots it as a function of the doping, however,

the room temperature value, as a function of the doping, crosses zero almost exactly at

the optimal doping for all the known cuprates [7]. In fact, if one wants to know whether a

certain material at the room temperature becomes a superconductor, the thermoelectric

power at the room temperature can thus be a good criterion.

So far, we have talked about the ab-plane transports. What about the c-axis? The

c-axis resistivity at the optimal doping is rather interesting. It always appears to vary as

ρ(T ) ∝ Tα. (6.7)

However, the power α can range from −1 to +1 for different cuprates, which is quite

puzzling. There have been a large number of papers trying to explain this fact.

6.7.4 Spectroscopic probes: Fermi surface

If one is dealing with some materials, the obvious question is whether they have any

Fermi surface and, if they have, what the Fermi surface looks like. Two most useful

probes of the Fermi surface in a metal are angularly resolved photoemission spectroscopy

(ARPES) and quantum-oscillation phenomena.

In the late 1980s, it was recognized that ARPES should be a particularly nice way for

examining cuprates4. In ARPES, one shines light with a given frequency, and measures the

momentum and energy of the electrons kicked out. If one deals with a three-dimensional

metal, there would be a slight problem there; although the momentum is conserved in

the transverse direction, the component normal to the surface is likely to change when

the electron emerges from the metal. In the cuprates, very luckily, one can essentially

treat it as a two-dimensional problem, and the above problem does not appear. ARPES

essentially measures the spectral function A(k, ε), the probability of finding an electron

with its momentum k and energy ε in the thermal equilibrium state. For non-interacting

electrons, it would be proportional to δ(ε− εk), because if one electron has a Bloch wave

k it has the definite energy corresponding to the wave vector. One expects that the

coefficient of the delta function is essentially 1 when k is inside the Fermi surface, and 0

for the other. However, this is not the case, in general, for interacting cases including the

cuprates.

4For a review of ARPES studies on cuprate superconductors, see Ref. [8].
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The quantum-oscillation phenomena occur in thin materials under a high magnetic

field, in which various quantities such as the magnetization and the resistivity oscillate

as a function of the magnetic field. The oscillation is not periodic in the field itself but

rather in the inverse of the field. Let us refer to the class of these effects as de Haas-van

Alphen (dHvA) effects. The quantum oscillations were, for a long time, thought to be

almost impossible in the cuprates. However, in the last three years or so, researchers

have succeeded in doing dHvA experiments. The dHvA-type experiments measure the

area(s) of those parts of the Fermi surface corresponding to the closed orbits, the classical

motion in the magnetic field. One cannot say anything about their shape or position

through dHvA experiments. Because of the strongly two-dimensional (layered) nature of

the cuprates, the magnetic field is always applied along the c-axis, and it simply measures

the areas of the two-dimensional Fermi surface(s), which is a much simpler situation than

in three-dimensional metals.

6.7.5 Results of ARPES experiments at the optimal doping

First of all, A(k, ε) does not look like δ(ε− εk) at all; an incoherent background seems

to be ∼ 90% of the total weight. We do get the peak but it is just 10% of the total

weight. Crudely speaking, this result suggests that if indeed the cuprates at the optimal

doping are well described by the Fermi liquid theory, they are very bad ones. However, the

energy-integrated function, which indicates whether the state k is occupied, does show

a jump (∼ 10%) as a function of |k| for a given direction n̂. Since the Fermi surface

is defined as the locus of the points where the discontinuity occurs, this fact gives us a

well-defined Fermi surface. This function for cuprates at the optimal doping is shown in

Fig. 6.7. Filled states are located at the center of the first Brillouin zone, and the hole-like

Fermi surface is located at the zone corner (π, π). Luttinger’s theorem states that the

volume enclosed by the Fermi surface is directly proportional to the particle density, and

it allows us to calculate the hole density: nh ∼ 1.19 (∼ 1+p, as naively expected). This is

kx

ky

(π,π)

Filled

states

Fig. 6.7. Energy-integrated function of the cuprates.
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a rather important result; at least, at the optimal doping, it is consistent with the Fermi

liquid picture. Moreover, the number of electrons occupying the Fermi sea is exactly 1

plus p, where the former contribution (1) is originally there in the parent compound,

while the latter one (p) is added by the doping. It turns out that dHvA experiments on

a somewhat overdoped side are consistent with this result.

6.7.6 Neutron scattering

Neutrons couple mainly to electron spins, and the cross-section σ(q, ω) measures the

spin-fluctuations. For fixed q, the cross-section as a function of ω in the normal state

has no marked structure. However, for fixed ω, the cross-section as a function of q has

a marked peak at q = (0.5π/a, 0.5π/a) [9]. Importantly, the q value is precisely equal

to the Bragg vector of the magnetic superlattice in the antiferromagnetic phase, which of

course is measured independently. This suggests that the strong antiferromagnetic spin

fluctuations, which are there in the original pure antiferromagnetic phase, do seem to

persist quite strongly into the non-magnetic phase.

6.7.7 Optics (ab-plane)

Most of the direct experiments measure the optical reflectivity R(ω) [9]. Unfortunately,

the optical reflectivity measures a raw and nasty combination of the real and imaginary

parts of the dielectric function:

R(ω) =
(1− Re ε(ω))2 + (Im ε(ω))2

(1 + Re ε(ω))2 + (Im ε(ω))2
. (6.8)

To obtain anything about the individual part, one can exploit the fact that the real and

imaginary parts are related by the Kramers–Kronig relations:

Re ε(ω)− 1 = P

∫ ∞

−∞

dω′

π

Im ε(ω′)

ω′ − ω
, (6.9)

Im ε(ω) = −P

∫ ∞

−∞

dω′

π

Re ε(ω′)− 1

ω′ − ω
. (6.10)

Using either of these equations, and with a knowledge of R(ω) in all frequencies, one can,

in principle, obtain Re ε and Im ε.

There is, however, a more direct way to measure these optical quantities. In the last

few years, two or three groups have done ellipsometric measurements. In this method, we

can directly measure the complex dielectric constant ε(ω) individually without using the

Krammers-Kronig relation.

The most important quantity in the optical data is the loss function,

L(ω) = − Im
1

ε(ω)
. (6.11)
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Fig. 6.8. (a) Loss function L(ω). (b) Phase diagram in the underdoped regime.

Can we expect this quantity to be universal between cuprates? First of all, note that

ε(ω) is a three-dimensional quantity, and therefore, it is sensitive both to the CuO2 plane

density and the charge reservoir contribution to Re ε. The charge reservoir is, generally

speaking, pretty insulating. It is not likely to make much contribution to the measured

properties. The shape of the loss function in logarithmic scale is given in Fig. 6.8 (a).

Surprisingly, it looks as if the mid-infrared (MIR) peak, which is always seen in optics in

the cuprates, is only weakly material-dependent.

The behavior is not much interesting below 0.1 eV. Between 0.1-1 eV, one always obtains

a strong and broad MIR peak; this peak is very characteristic of all cuprates, including

non-superconducting ones. Then L(ω) drops drastically. The energy value at which L(ω)

takes the minimum value, typically 1-2 eV for the cuprates, roughly corresponds to the

plasma frequency. After that, L(ω) again rises; this behavior is material-dependent.

Not just optics show this behavior. Incidentally, this behavior is consistent with the

elecron energy-loss spectroscopy (EELS) experiments [10], which directly measure the

loss function L(q, ω) of impinged electrons through the interaction with a solid. In the

normal phase, one sees the MIR peak up to q ∼ 0.1 Å−1, beyond which it looks somewhat

attenuated.

6.8 Experimental properties at the underdoped regime

6.8.1 Pseudogap

Let us move on to the underdoped regime [11]. The pseudogap region as shown in

Fig. 6.8 (b) is, from an experimental point of view, not superconducting. Presumably, the
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system does not have any long-range order5. However, there are considerable evidences

that below the T ∗-line the fermionic excitation spectrum has an energy gap similar to

that of the superconducting phase. Some of the evidences are listed below:

(a) Specific heat: CV ∼ γT for T� T ∗, but for T ≤ T ∗ it drops well below the T -linear

behavior [12].

(b) Static spin susceptibility from the Knight shift: χ ∼ const. for T � T ∗, and it

drops below that value for T ≤ T ?. Interestingly, if we define the so-called Wilson

ratio S/χT (rather than CV /χ), it is almost independent of T for all T .

(c) Nuclear spin relaxation rate: T−1
1 ∝ T (Korringa law) for T � T ∗, and it falls below

the T -linear behavior for T ≤ T ∗.

(d) Transport: both the in-plane resistivity ρab(T ) and the c-axis resistivity ρc(T ) drop

for T ≤ T ∗ at frequency ω ≤ 500 cm−1 (corresponds to ∼ 750 K).

What do all of these suggest? Remember that the resistivity is certainly always limited

by the electron-electron scattering. If the resistivity drops, this means less scattering,

or less carriers, which then suggests a reduced DOS below E ∼ a few 100 K. However,

this does not directly suggest an actual energy gap. The direct observation of the finite

energy gap requires different kinds of experiments. If we perform experiments at the

optimal doping, we find nothing spectacular, but experiments at the underdoped regime

give us something unconventional:

(e) Tunneling: a gap-like feature is seen in tunneling characteristics, above Tc and up

to the room temperature. The tunneling characteristic of metals between normal

metals like Cu and cuprates in the underdoped regime looks somewhat similar to

Bi2212

0

Normal state

∆N(ε)

ε εF ε εF

N(ε)

Superconducting state

(a) (b)

Fig. 6.9. (a) Tunneling result for the underdoped cuprates. (b) Gap opening in the density

of states at εF .

5I will come back to the topic about the precise relationship between the superconductivity and the
long-range order in Sec. 8.2.
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the standard tunneling result of normal-metal superconducting materials (Fig. 6.9

(a)).

(f) ARPES (see below): can detect the feature more directly.

There are some recent and somewhat controversial evidences for the spontaneous break-

ing of the rotational π
2
invariance in the pseudogap regime. We may get a stripe-like struc-

ture then [13]. Also, controversially, some researchers claim the spontaneous violation of

time-reversal symmetry.

6.8.2 ARPES in the pseudogap regime: the puzzle of the Fermi

surface

Let us discuss ARPES in the pseudogap regime. How the Fermi surface behaves in

the pseudogap regime? In the superconducting state at the optimal doping, the diffuse

normal-state ARPES spectrum develops into a sharp peak which is pulled well back from

the Fermi energy (Fig. 6.9 (b)). The n̂-dependent difference is usually taken as a measure

of the gap; it is of dx2−y2 form, i.e., 0 at (π, π) and largest along the crystal axes. We will

come back to this point in the next lecture. At the optimal doping and on the overdoped

side, the ∆(n̂, T ) so defined appears to vanish for T > Tc. However, in the underdoped

regime, a gap of similar dx2−y2 form is seen in the superconducting state and persists

above Tc [14, 15]; ∆(n̂, T ) appears to be more or less T -independent, but the amplitude

of the peak decreases, and it disappears around the room temperature.

There is a puzzle here; ARPES data appear to show (modulo the gap) that even in

the psudogap regime the Fermi surface is well-defined and is quite similar to that seen at

the optimal and overdoped values of p, i.e., the large (∼ 1 + p) Fermi surface (Fig. 6.7).

Unfortunately, the dHvA oscillations seem to indicate equally definitively that the Fermi

surface(s) is very small. Supposing 4-fold rotational symmetry, because dHvA exper-

iments do not provide information about the exact locus of the Fermi surface in the

momentum space, one possible case is that the small pocket-like Fermi surfaces appear

around (±π
2
,±π

2
) (Fig. 6.10). Even under this assumption the total hole concentration in

the Fermi sea would be only ∼ p, not 1 + p.

One possible resolution is that, because dHvA has to be conducted at high magnetic

field (∼ 20 T), it might qualitatively change the nature of the ground state. Remember

that in the overdoped regime, dHvA and ARPES show a large Fermi surface. This fact

seems to imply that there is a qualitative change in the Fermi surface when one sweeps

across the phase diagram from the overdoped regime to the underdoped regime. At least

under large fields, there must be a discontinuity or a crossover in the qualitative nature

of the ground state as a function of the doping.

Here are obvious questions; where exactly does the change occur? What kind of change

is this, a general phase transition or a crossover? It is difficult to avoid the following
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ky

kx

Fig. 6.10. A possible Fermi surface in the underdoped regime according to dHvA experi-

ment.

conclusion: unfortunately, to the best of our knowledge, the existing dHvA experiments

cannot answer them. This is certainly something which researchers must be working on

in the next few years.
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Lec. 7 Cuprates: superconducting

state properties

I want to spend most of this lecture on the properties of cuprates in the superconducting

phase. This has been the major topic of research over the last 25 years. One should bear

in mind that like the normal state properties, the properties in the superconducting states

do tend to be somewhat doping-dependent. They are actually less doping-dependent than

the normal state properties. I will quote results at the optimal doping unless otherwise

stated. To give you an orientation, I will compare them with the BCS predictions wherever

possible.

7.1 Experimental properties

7.1.1 Structural and elastic properties and electron density dis-

tribution

These quantities are measured, for example, by the X-ray scattering. As far as we

know, they do not change substantially at Tc or below, as in the BCS prediction.

7.1.2 Macroscopic electromagnetic properties

i) Strongly type-II.

ii) Strongly anisotropic.

The penetration depth along the c-axis1 is much greater than that in the ab-plane,

λc � λab. This means that the pair radius, or the coherence length, is far less in the

c-axis direction ξc � ξab.

We can actually measure the upper critical field fairly close to Tc [1]. If we extrapolate
2

it to T = 0, their values are Hc2(0) ∼ 50 T for H || c, and ∼ 400 T for H ⊥ c. If

we interpret these results by the BCS theory, the corresponding coherence lengths are

ξab(0) ∼ 15-30 Å, and ξc(0) ∼ 2-3 Å. Note that ξc(0) ∼ 2-3 Å is smaller than the

1The penetration depth in the c-axis corresponds to the current flowing along the c-axis. That does
not mean the penetration of the magnetic field in the c-axis direction.

2This is much greater than the field we can obtain with the existing magnets, so these are just
extrapolations.

117

《講義ノート》



A. J. Leggett LEC. 7. CUPRATES: SUPERCONDUCTING STATE PROPERTIES

actual spacing of the unit cell dimension in the c-axis. Notice, incidentally, that there is

another way within the BCS theory of getting the coherence length from the transition

temperature: ξab(0) = 0.18~vF/kBTc. The estimate done by this formula agrees well with

the one obtained from the upper critical field (if we use m∗/m = 4).

7.1.3 Specific heat and condensation energy

There is a jump in the specific heat at Tc, as expected by the BCS theory. The amount

of the jump is
Cs − Cn

Cn

(Tc) ∼= 1.6-2 [2], which is somewhat larger than the BCS value 1.4.

At the optimal doping, the shape of the peak is relatively sharp, while in the underdoped

and overdoped regimes, the peak is considerably more rounded. That is to be expected

on the underdoped side, but it is puzzling on the overdoped side.

For T < Tc, the specific heat falls off sharply, as in the BCS theory. In contrast, for

T → 0 it goes as a power law, probably T n. It is probably consistent with n = 1 (but I

think it is dubious. I will come back this point later).

The condensation energy is rather striking. The condensation energy as a function of

the doping has a sharp peak at p ≈ 0.19. Remember that this doping value is not the

“optimal” value p ≈ 0.16 corresponding to the maximum Tc, but it is rather the point, at

least approximately, where the T ∗-line intersects the axis if we extrapolate it. This may

be significant, since the T ∗-line is often interpreted as an indication of the quantum phase

transition at T = 0, and if that idea is right, the point p ≈ 0.19 is exactly where the

quantum phase transition occurs. Note, however, that at finite temperature, the T ∗-line

itself represents a crossover rather than a phase transition.

It is interesting to work out the condensation energy in terms of the CuO2 unit. It turns

out that the maximum condensation energy is ∼ 33 J/mol at p ≈ 0.19, corresponding

to ∆Uns(0) ∼= 2 K/CuO2 unit. This value does seem to be relatively independent of the

compounds.

7.1.4 NMR

The relaxation time T−1
1 drops precipitately below Tc, and appears to behave as T−1

1 ∝
T 3 as T → 0, which is consistent with the point node [3]. χ behaves rather like that of

the BCS theory in T & 0.5Tc. Below that temperature, the value is larger than the BCS

value, again probably consistent with the power law.

7.1.5 Penetration depth

The penetration depth is one of the most frequently measured quantities. There are

several different methods for measuring the penetration depth:
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(a) Magnetization-related

There is a method related to the magnetization. Unfortunately, because of the anisotropy,

the theory is not in a simple form, and thus it is not so reliable.

(b) Fraunhofer diffraction in Josephson junction

This method has been used for some classical superconductors, but it is not widely used

in the cuprates so far.

(c) µSR (muon spin rotation)

It is generally believed that this method is reliable.

(d) Microwave surface impedance

I think this is the most reliable method to measure the penetration depth. In particular,

the group of Bonn and Hardy at the university of British Columbia has specialized in this

measurement, and it does appear to agree, at least approximately, with the muon spin

resonance result. Therefore, I have a certain amount of confidence in this method.

Let us discuss the superconducting fraction ρs/ρ, which is proportional to λ−2, rather

than discussing the penetration depth directly. In the ab-plane, near Tc, it is probably

ρs/ρ ∝ (Tc − T )2/3. This is interesting: this behavior is exactly what we obtain in the

3D XY-model, a complex scaler field theory. In 4He, this power-law dependence, with

its power not exactly 2/3, but nearly 2/3, has been extremely well verified. Therefore,

it seems that the superconductivity in the cuprates has the same universality class with
4He.

For T → 0, things become slightly complicated. In pure samples, the correction appears

to behave linearly ρs/ρ = 1 − αT , while in dirty samples, the correction is quadratic

ρs/ρ = 1 − α′T 2. These facts are consistent with a gap with a point node. The value of

the penetration depth at T = 0 is λ(0) ∼ 1000 Å for YBCO at the optimal doping in the

b-axis direction, while it can be as large as λ(0) ∼ 4000 Å for LSCO.

Fig. 7.1. Temperature dependence of the superfluid density.
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It is interesting to ask how well do the data on the ab-plane penetration depth λab(0)

agree with the “naive” (quasi-London) prediction

λ−2(0) = n3De
2µ0/m

∗. (7.1)

We can fit with the data m∗ = 4m, which is consistent with the effective mass in the

normal state value of the specific heat, and with n3D = 1022 cm−3 × peff , where peff is the

effective number of carriers per CuO2 unit. We must take here not peff = p, but rather

peff = 1 + p. (7.2)

In other words, we must count not only the excess ones over the parent compound, but

rather all the holes in the Cu 3d9 band. This is a rather important conclusion. Therefore,

in terms of the superconductivity, it is not just the added electrons, but rather all the

electrons in the d-band are playing the role.

There is one puzzling thing: in YBCO, λa(0) ∼= 1600 Å, while λb(0) ∼= 1000 Å. If we

square them up to get the superfluid density, the value in the b-axis is 2.5 times larger

than that in the a-axis. At first sight, that appears to say that the chains, which are

pointing along the b-axis, are carrying 3/2 as much contribution as both planes! That is

really quite surprising, and as far as I know, there has been no solution to this puzzle.

The c-axis penetration depth is far larger than that in the ab-plane: from λc(0) ∼ 11, 000

Å for YBCO, to ∼ 100 µm (=0.1 mm!) for Bi-2212. These values are much larger than

what we find in the typical BCS superconductors. When we underdope them, these values

increase very rapidly. This is not surprising: particularly, in the case of YBCO, as one

underdopes, one certainly depletes the chains, which are forming the bridges between the

planes. Thus, we decrease the contact along the c-axis.

The temperature dependence of the c-axis penetration depth at low temperature is

much weaker than in the ab-plane, and it may be fit by ρs/ρ ∼ 1− αT 5.

An interesting question we may ask is as follows: what will happen if we model the

interlayer contact as a Josephson junction and apply the standard Ambegaokar–Baratoff

formula Ic(0)Rn = π∆(0)/2e, which relate the critical current Ic of the Josephson junction

and the energy gap. With a little bit of algebra, we find

λ−2
c (0)ρcdint/∆(0) = const., (7.3)

where dint is the mean spacing between the multilayers. This agrees reasonably well with

experiments, which suggests that the idea of modeling the inter-plane contact as a set of

Josephson junction works.

7.1.6 AC conductivity

Both in the BCS superconductors and in the cuprates, the behaviors of the AC con-

ductivity are really quite complicated, but there are two qualitative differences:
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i) In the cuprates, σ(ω) is appreciable for ω < 2∆(0), while for the BCS superconductors

σ(ω) = 0 since there is no single electron state there.

ii) For finite ω, σ(ω) rises immediately below Tc, and thereafter drops, which suggests

that σ(ω) is limited by the electron-electron scattering, and the number of electrons taking

part in the scattering will later drop below Tc. That is self-consistent with the behavior

of the thermal conductivity, as we shall see next.

7.1.7 Thermal conductivity

We can use the kinetic-theory formula

κ =
1

3
CV v` (7.4)

for both the phonon and electron contributions to the thermal conductivity. From this

formula, we obtain

κph/κel ∼ (T/ΘD)
2(`ph/`el) (7.5)

for p ∼ 1, where ΘD is the Debye temperature, `ph and `el are the mean free paths of

electrons and phonons. We have used cs/vF ∼ ωD/εF here.

For the BCS superconductors, κph/κel � 1 at Tc, so that κ ∼ κel. Therefore, the

thermal conductivity is proportional to the number of normal electrons, which falls off

rapidly below Tc.

For the cuprates, since the transition temperature is high and the electron mean free

path is short, it turns out that κph/κel & 1. In other words, the phonon contribution is

quite important near Tc. As an experimental fact, we know that κ rises below Tc and

thereafter drops. We can argue, probably, that the phonons are dominant, which is limited

by the scattering with electrons. This effect of scattering then drops below Tc, since the

number of normal electrons decreases. However, it is also possible that even though the

electrons are dominant, we still get this scattering. Therefore, it is not entirely clear how

much is due to electrons and phonons.

7.1.8 Tunneling

We can see a very characteristic difference in tunneling experiments [4, 5, 6]. In the BCS

model, the differential conductance measured in the tunneling experiment G ≡ ∂I/∂V is

flat in the normal state, while in the superconducting state,

Gs(E)/Gn =
ε√

ε2 −∆2
θ(ε−∆), (7.6)
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Fig. 7.2. (a) Tunneling density of states for a BCS superconductor. (b) Tunneling density

of states for a typical cuprate (ab-plane).

which is illustrated in Fig. 7.2 (a). It is zero for the energy smaller than the gap, while

for the energy larger than the gap, there is a characteristic peak from the increase in

the number of states. In the cuprates, first of all there is some energy dependence as

Gn(E) ∼ a + b(E), while in the superconducting state it has an interesting feature as

illustrated in Fig. 7.2 (b). As you can see, there is (i) a “dip” beyond the peak which is

not present in the BCS superconductor. Secondly, (ii) Gs(E = 0) 6= 0, which would rather

strongly indicate that there is a non-zero density of electronic state at the zero energy.

Finally, (iii) the peak-to-peak distance, which is “2∆” in the BCS theory, is typically

∼ 7-8kBTc for the ab-plane tunneling, whereas in the BCS theory it is only 3.5kBTc. It

turns out, however, that it is closer to the BCS theory for the c-axis tunneling, and also

for the overdoping. The fact that the overdoping region is close to the BCS theory is

consistent with a rather general observation that perhaps all the cuprates become more

BCS-like toward the overdoping (the normal state becomes more normal Fermi liquid-like,

and it becomes BCS-like in the superconducting state).

7.1.9 ARPES

A typical behavior of the ARPES spectra [7, 8, 9] is illustrated in Fig. 7.3 (a). First of all,

we do have both in the normal and superconducting states a very apparent discontinuity,

or something looking like more or less a discontinuity, at what we identify as the Fermi

energy. However, the discontinuity is rather small both in the normal and superconducting

states, and it is only something like 10% of the whole value; it appears that the background

is not zero. Another interesting feature is that there is a dip beyond the peak just as in

the tunneling spectrum. Furthermore, as we go into the superconducting state, there

appears a “pullback” ∆ε of the spectrum from the normal state Fermi energy, typically

∆ε(π, 0) ∼ 4-5kBTc. The most interesting feature of this pullback is the dependence of

∆ε(n) or the peak height on the angle on the Fermi surface. Both the pullback and the

peak height take their maxima in (π, 0) and (0, π) directions in the Brillouin zone, while

they take minima, in fact they go to zero, in (π, π) direction. This would then indicate
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Fig. 7.3. (a) ARPES spectrum of a typical cuprate in the anti-nodal direction. (b) First

Brillouin zone of the cuprates, and the orientation dependence of the energy gap (dx2−y2

symmetry).

that, at least as seen in the ARPES data, the “gap” has a node in (π, π) direction. People

have tried to fit the gap numerically to simple formulae, but I do not think that is the

crucial point. One sometime worries if it does not fit some simple formulae, but I think

there is no reason to expect that.

7.1.10 Neutron scattering (YBCO, LSCO, and Bi-2212)

Remember that in the normal state, the neutron scattering cross section σ(q, ω) is

fairly strongly peaked as a function of q at q = (0.5π/a, 0.5π/a) (magnetic superlattice

values), but featureless as a function of frequency. In the superconducting state in YBCO

[9, 10, 11] and Bi-2212 [12], nothing changes in the “even” channel (both planes in the

c-axis contribute in phase). On the other hand, in the “odd” channel (both planes in the

c-axis contribute out of phase, i.e., qz = π/d, where d is the interlayer spacing), there

is a striking peak seen around q = (0.5π/a, 0.5π/a) with ω ∼ 41 meV. It is only seen

in the odd channel, not seen in LSCO [9], which only has a single plane and there is no

odd channel for it. Thus, we can ask a very obvious question: is this peak is peculiar to

bilayer cuprates? I have been trying hard to find any recent data on that (the above is

quite early observation, first done in the late 1990s), and I am rather sure that people

have been trying to do experiments on a single layered material. However, I have not

been able to find any published result for this experiment. Thus, we do not know whether

it is peculiar to bilayer cuprates. My guess would be that it strongly is, considering the

fact that it appears only in the odd channel. In any case, no one is quite sure what is

significant for this strong peak, although it is a very striking feature.

7.1.11 Optics

In the BCS theory, the superconductivity affects only those single electron states with

their energy of the order of ∆ ∼ kBTc, so that the optical behavior at frequency ω � ∆

is not so affected by the superconductivity. In fact, with a calculation based on the BCS
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theory, we can indeed show that the effect is of the order of (kBTc/~ω)2. If we put the

values for the cuprates and ~ω ∼ 1 eV, the result is ∼ 10−4, which is probably too small

to be seen. In reality, the changes of the spectra in superconducting state are ∼ 2-5%

[13, 14, 15]. Even at 5 eV, we still see appreciable changes in the optical spectrum at Tc
and below Tc.

More precisely, the original measurements are done for the reflectivity R(ω), which is

the easiest kinds of measurements we can do about the optics. If we define a quantity

η(ω) as

η(ω) ≡ Rs(ω)

Rn(ω)
− 1, (7.7)

we obtain a curve drawn in Fig. 7.4. What is striking is that the zero crossing of η(ω)

occurs almost exactly where the normal state reflectivity Rn(ω) has the minimum. That

then might suggest

η(ω) = −δ(∂Rn/∂ω) (7.8)

where δ is the average downward shift of the “initial” state (no change in the final state).

Unfortunately, the relation does not work for the following reasons:

(a) It requires δ ∼ ∆, which in turn implies, apparently, that the initial states are

strongly concentrated over the energy range ∼ ∆ near εF . It does appear that there is no

obvious reason for this to happen.

(b) While the above assumption does seem qualitatively to fit the data on the reflec-

tivity, recent ellipsometric experiments [14, 15] have shown that it does not seem to fit

ε1(ω) and ε2(ω).

0.5

1 2
(%)

Fig. 7.4. Behavior of η(ω) as defined in Eq. (7.7).
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7.1.12 Electron energy loss spectroscopy (EELS)

Unfortunately, for reasons I do not understand, only a few EELS experiments were

done in the early days of the cuprates, in the late 1980s and early 1990s [15, 16]. We

actually have a lot of data in the normal state and the mid-infrared peak can be seen. For

the superconducting states, on the other hand, the published data can be found only at

low energy ω . 100 meV. This is probably because they expected to see the energy gap,

which I think is, a priori, a bad idea. In fact, we may not see the gap with the EELS.

Crudely speaking, the low energy EELS data is strongly overscreened and it is possible

that we do not see anything interesting there. Unfortunately they did not go into the mid

infrared regime (ω ∼ 0.5-1 eV), although I wish they had. Now my colleagues are going

to do that.

7.2 What do we know for sure about superconduc-

tivity in the cuprates?

In the last twenty five years, there have been hundreds of microscopic theories on what is

going on in the cuprates. No one can agree which of these theories are correct. Thus, let us

discuss here what we can say for sure about the superconductivity in the cuprates, without

adopting any particular microscopic theory, but rather just by looking at experimental

properties of the cuprates with some very basic theoretical considerations.

1. “Cooper pairs” are formed in the cuprate superconductors.

For the BCS superconductors, it is an almost universal belief that the onset

of superconductivity coincides with the onset of the off-diagonal long range order

(ODLRO). In other words, superconductivity is due to the formation of Cooper pairs.

More technically, the basic “topology” of many-body wave function is

ΨN ∼ A[φ(r1σ1; r2σ2)φ(r3σ3; r4σ4) · · ·φ(rN−1σN−1; rNσN)], (7.9)

where φ is the same “molecular” wave function for all pairs (quasi-BEC of Cooper

pairs). For most purposes, it is more convenient to work in terms of closely related

(but different) quantity

F (r1, r2, σ1, σ2) = 〈ψ†
σ1
(r1)ψ

†
σ2
(r2)〉. (“pair wave function”) (7.10)

“Macroscopic wave function” of Ginzburg and Landau, Ψ(R), is just F (r1, r2, σ1, σ2)

for σ1 = −σ2 = +1, and r1 = r2 = R, i.e., the wave function of the center of mass

of Cooper pairs.

Why do we assume these forms “pairing hypothesis” for old-fashion superconduc-

tors? One good reason is that one spectacular prediction of this hypothesis is that
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flux is quantized in hc/2e. With the flux quantization and Josephson experiments

(see Sec. 7.4 for more details.), it is shown that this pairing hypothesis to be ex-

actly satisfied for old-fashion superconductors. Those experiments are also done for

the cuprates, and sure enough we obtain the same quantization, and the pairing

hypothesis is also exactly satisfied.

2. “Universality” of high-Tc cuprate superconductors with very different chemical

compositions, etc.

Almost all agree that the main actors in the superconductivity are electrons in

CuO2 planes. It is not necessarily true that CuO2 planes are the main actor just

because all the cuprates have them in common3. However, it is widely believed that

CuO2 planes are the main actors.

We know that charge reservoirs are very important but not all the cuprates have

charge reservoirs (the “infinite layer” cuprates do not have charge reservoirs but

they are still very good high-Tc superconductors).

3. Spin state of the Cooper pairs is singlet.

For simplicity, we assume that we can neglect the spin-orbit interaction, because

oxygen and copper are light (atomic masses: 16 and 29) and thus the spin-orbit

interaction is small at least within CuO2 planes. Then, we can do the simple analysis

in terms of the spin wave function and the orbital wave function.

What do we know, first of all, about the spin wave function? We discussed before

that at least in the BCS theory, the Pauli spin susceptibility drops rapidly for spin-

singlet and remain constant for spin-triplet, as shown in Fig. 7.5. Experimental

results in the NMR (χs, T1, ...) imply the latter. Therefore it is fair conclusion that

the spin state of the cuprates is singlet (not triplet), i.e.,

F (r1, r2, σ1, σ2) =
1√
2
(↑↓ − ↓↑)F (r1, r2). (7.11)

4. Copper pairs are formed out of electrons in the same band.

Some years ago, J. Tahir–Kheli made an interesting proposal [17]. He said why

do we always assume that Cooper pairs are formed from time-reversal states that

are from the same band. There may be another possibility that they are formed

by taking one electron from one band and second electron from another. He claims

that the theory may explain some of the experimental properties. In particular, it

might give a natural explanation on why superconductivity is so strongly peaked as a

function of doping. However, according to his theory, we always expect a substantial

3As an example, one of my colleagues pointed out that whole class of airplane have wheels in common
but they are not the main part of flight.
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Fig. 7.5. Spin susceptibility as a function of temperature.

FIR absorption just above the gap edge, which is certainly not seen experimentally.

Thus, I do not believe the theory is totally correct, and we can conclude with a

good confidence that the Copper pairs are formed from the states with the opposite

spins and opposite momenta (i.e., the time-reversed states) in the same band.

5. Small Cooper pair size, and large effect of fluctuations.

As we discussed in Sec. 7.1.2, the order-of-magnitude estimates from Tc and Hc

shows that the in-plane “radius” of Cooper pairs ξ0 is typically 15-30 Å, and it is

the order of a few lattice spacings a: ξ0/a ∼ 3-10. Compared with value for the BCS

superconductors, ξ0/a ∼ 104 for Al for example, it is far smaller. This implies that

the fluctuations ought to be much more important in the cuprates than in the BCS

superconductors. This is certainly true. For example, while the resistivity is smooth

in the normal phase and drops vertically4 when it enters the superconducting phase

for Al, the transition is slightly rounded for BSCCO. When we apply a stronger

magnetic field (∼ 10 T), it becomes so rounded that it is very difficult to say where

exactly the Tc is.

6. Irrelevance of the inter-layer tunneling.

In the normal state, the c-axis resistivity is very high. One can interpret the

resistivity in terms of electrons’ hopping from one plane to the next, being somehow

disturbed by fluctuations and decay. The average time taken for electrons to hop

between planes is much greater than ~/kBT . This has a significant implication:

crudely speaking, ~/kBT is of the order of the characteristic time associated with

superconducting state. Thus, the large hopping time strongly suggests that the

pairs in different multilayers can be regarded effectively as independent. In other

words, in order to analyze the superconducting behaviors of the cuprates, it is

sufficient, at least in the first approximation, to focus on a single plane. This has

not always been the universal view; in the first ten to fifteen years of the subject,

Anderson’s interlayer tunneling theory, which rejected this point of view and claimed

that the hopping in the c-axis is crucial, was rather appreciated. However, one

4Basically, it is very difficult to measure the width of superconducting transition in Al because it is
too small.
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critical experiment in 2000 or so has led most of us, including Anderson himself, to

disbelieve his theory. Therefore, the c-axis hopping is negligible.

7. Absence of substantial isotope effect and “folk-theorems” on Tc.

At least in higher-Tc cuprates, no substantial isotope effect has been seen. In

lower-Tc cuprates, and even in higher-Tc ones in strongly overdoped or underdoped

regimes, we do have the isotope effect. This tends to suggest that phonons are

playing very minor roles. The isotope effect appears only when electronic effects are

strongly suppressed.

A “folk-theorem” on Tc is another evidence for the non-phonon mechanisms. Band

theorists, using such methods as the local density approximation (LDA), claim to

be very good at predicting Tc with the BCS scheme: i.e., with the hypothesis of the

electron-phonon coupling. They say that we will never get higher Tc than 40 K in

the phonon mechanism. Thus, basically5 the phonon alone is not enough to explain

the higher Tc.

7.3 Symmetry of the order parameter (gap)

In the BCS theory, the fermionic gap ∆(n) has almost the same n-dependence as the

order parameter Ψ(n). In a more general theory, however, this is not guaranteed, but it

seems very unlikely that the symmetries of these two quantities are totally different.

As we have seen, NMR experiments indicate that the order parameter is spin-singlet,

i.e.,

F (r1, r2, σ1, σ2) =
1√
2
(↑1↓2 − ↓2↑1)F (r1, r2), (7.12)

where F (r1, r2) and Fk are even-parity. We assume relevant symmetry is that of CuO2

plains, i.e., (approximately) tetragonal. Then symmetry group is C4v (symmetry group

of square) with the fundamental operations below:

(a) Rotation through π/2 around z-axis (R̂π/2).

(b) Reflection in crystal axis, e.g. (100) (Îaxis).

(c) Reflection in a 45◦ axis, e.g. (110) (Îπ/4).

Note that the operations (a)-(c) are not independent:

ÎaxisÎπ/4R̂π/2 ≡ 1. (7.13)

5There is one or two exceptions against this folk-theorem. Tsuei et. al. suggested we could somehow
get a phonon mechanism without the isotope effect, but there is no positive evidence of this mechanism
[18].
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Table 7.1. Four allowed symmetries of the order parameter in the cuprates.

Informal name Group theoretic

notation

R̂π/2 Îaxis Representative

state

s+ A1g +1 +1 1

s− (‘g’) A2g +1 −1 xy(x2 − y2)

dx2−y2 B1g −1 +1 x2 − y2

dxy B2g −1 −1 xy

It is rather trivial to see Î2axis ≡ Î2π/4 ≡ 1. Moreover, since we restrict ourselves to the

case where Fk is even parity, R̂2
π/2Fk = F−k = Fk for any Fk under consideration, which

means6 R̂2
π/2 = 1.

As a result, all of these operators can only have eigenvalues ±1, which determines

only four possible irreducible representations (all one-dimensional). Table 7.1 gives the

overview of these possible cases. You should not take the figures so seriously; for example,

it is still possible that the s-wave gap has nodes in the directions of 30◦ and 60◦. When

we talk about the symmetry of the gap, we should be thinking of only how the order

parameter behaves under symmetry operations.

Here is an interesting question: are we actually sure that the order parameter belongs to

a single irreducible representation? Could it not belong to more than one representations?

In general, yes it could. However, with the following argument, we exclude this possibility.

If i labels the different irreducible representations, the free energy can be expanded as

F (T ) =
∑
ij

αij(T )ψ
∗
iψj +

1

2

∑
ijk`

βijk`(T )ψ
∗
iψ

∗
jψkψ`, (7.14)

with a help of the global U(1) symmetry. Quite generally, invariance of the free energy

under the above lattice symmetry operations implies αij = αjδij. Thus, the first terms

should be αi|ψi|2. For the second term, the order parameters of the different representa-

6In two dimensions, π rotation around z-axis is identical with the parity operation.
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tions can couple, so that it can make a complicated behavior in general.

If we assume more than one ψi 6= 0 contribute to the free energy, we automatically have

two phase transitions. Crudely speaking, the order parameter with a stronger attraction

starts to take non-zero values in the first phase transition, and the other one with a weaker

attraction becomes non-zero in the second phase transition. This is certainly not seen

experimentally. (For these two phase transitions to be coincide, we need very pathological

fine-tuning of parameter.) Thus we can conclude that

the order parameter belongs to a single irreducible representation.

According to the above argument, the order parameter must be just one of the four

forms, s, dx2−y2 , dxy and s
−. However, people usually concentrate on the first two, because

s-wave is favored by some types of theory (e.g., phonon) and dx2−y2 is favored by the spin-

fluctuation theory.

How to tell?

(a) dx2−y2 , dxy, s
− must have (at least) four nodes on Fermi surface. s need not.

Thus, exponential decrease of quasiparticle-associated quantities (χ, T−1
1 ,∆λ(T )...)

certainly implies s-wave. Experimentally, all these quantities have power-law de-

pendences consistent with two-dimensional point node. Does this inevitably exclude

s-wave? Unfortunately not, because even the s-wave state may have nodes allowed

by symmetry, i.e, the “extended s-wave” (see Fig. 7.6).

(b) More specifically, dx2−y2 (and s−) must have nodes at (π, π), whereas s (and

dxy) would have nodes at (π, π) only by pathology. Thus, the observation of nodes

suggests dx2−y2 . The ARPES data indeed indicates such nodes. However,

i) The “gap” seen in ARPES may not simply be the superconducting gap (cf.

pseudogap regime).

ii) The “extended s-wave” state of the form F (θ) = A+B cos 4θ (0 < B−A�
A) may be difficult in practice to distinguish from dx2−y2 (Fig. 7.6).

Therefore, we need experiments which are directly sensitive to the sign (or more generally

phase) of order parameter, such as the Josephson (“phase-sensitive”) experiments.

Fig. 7.6. Extended s-wave state, described as F (θ) = A+B cos 4θ (0 < B − A� A).
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7.4 Josephson experiment in cuprate (and other ex-

otic) superconductors

The Josephson experiment as a tool to determine the phase of the order parameter was

first suggested in the context of the p-wave superconductivity [19]. The first experiment

done in this direction was in 1993 with my colleagues [20].

The Josephson effect occurs for any geometry, including a superconductor-normal-

superconductor junction (Fig. 7.7), and a SQUID geometry (Fig. 7.7 (b)). For the former

case, to the lowest order in Ψ, the Josephson energy or the simple s-wave case is given by

EJ ∝ −const.(Ψ∗
1Ψ2 +Ψ∗

2Ψ1) ∼ −const. cos∆ϕ. (7.15)

where ∆φ is the phase difference between the two superconductors. In the SQUID geom-

etry, the critical current shows an interesting behavior: the critical current is maximum

at Φ = nΦ0, and minimum at Φ = (n+ 1/2)Φ0. This can be understood easily by using∑
i

∆ϕi = 2πΦ/Φ0 (7.16)

where ∆ϕi is the change of phase across the junction, and Φ is the flux through trapped

in the circuit7. For Φ = nΦ0, we can consider the simplest case Φ = 0. In this case, the

phase drops in the two paths are the same. On the other hand, for Φ = (n+1/2)Φ0, there

is π-phase difference, so that the Josephson current interferes destructively and takes its

minimum.

Let us start to see how these goes for the Josephson experiment in the cuprates. Basi-

cally, the Josephson experiment are based on the following two principles:

(a) If two bulk superconductors separated by the Josephson junction, and they are de-

scribed by Hamiltonian Ĥ, which is invariant under symmetry group G, then the

Josephson coupling energy must be similarly invariant under G.

Fig. 7.7. Various geometry of the Josephson experiments.

7Ψ and ∆ϕi are defined consistently here.
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(b) For a circuit, as shown in Fig. 7.8 (b), we again find the fundamental equation

Eq. (7.16).

We always assume the lowest-order Josephson energy (which is testable via Fraunhofer

diffraction pattern etc.) is given by Eq. (7.15).

Application (a) alone Let us consider π/2 rotation around z-axis on the system shown

in Fig. 7.8 (a). The Pb order parameter ΨPb is invariant, i.e., ΨPb → +ΨPb. If YBCO is

s-wave (s or s−), ΨYBCO → +ΨYBCO, then the lowest-order Josephson effect allowed. On

the other hand, if YBCO is d-wave (dx2−y2 or dxy), ΨYBCO → −ΨYBCO, the lowest-order

Josephson effect forbidden (otherwise, the free energy cannot be invariant under the π/2

rotation around the z-axis). Thus, this difference can be a crucial test for the symmetry

of the order parameter of exotic superconductors.

Application (b) alone Since the order parameter in Pb ΨPb is invariant under π/2

rotation, ΨPb takes the same value at junctions 1 and 2. If YBCO is s-wave, the situation

is the same as in conventional DC SQUID, so that Ic(Ψ) is maximum at Ψ = nΨ0, and

minimum at Ψ = (n + 1/2)Ψ0. On the other hand, if YBCO is d-wave, the sign of Ψ

changes between junction 1 and 2 in YBCO. This means that we effectively add π to the

right hand side of Eq. (7.16), which then implies that the critical current Ic is maximum

at Ψ = (n+1/2)Ψ0, and minimum at Ψ = nΨ0. The latter is what precisely D. Wollman

et. al. have found in the experiment [20]; there have been about twenty phase-sensitive

experiments by different groups as well. The conclusion from all these experiments is

that:

the order parameter of the cuprates is dx2−y2.

Some experiments prepared beautiful “tricrystal ring”, and exploit in some sense both

principles (a) and (b) (see pp. 345-346 of Ref. [21] for more detail), and got the same

conclusion.

(a)
(b)

Fig. 7.8. (a) Pb and YBCO are separated by Josephson junction which is invariant under

π/2 rotation around z-axis. (b) The setup for π-junction experiment [20].
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7.5 What is a “satisfactory” theory of the high-Tc

superconductivity in the cuprates?

It is interesting to ask a rather sociological question: how will we know when we have

a “satisfactory” theory of the high-Tc superconductivity in the cuprates? Right now, if

I go to my dozens of colleagues and ask, “do we understand high-Tc superconductivity”,

every one of them says “Yes!”. If we then ask “OK, then what is the correct theory?”, we

get totally different theories. That is not satisfactory at all.

How should we get out of this? By definition, we have a satisfactory theory if 90% or

95% of people agree. Apart from that, do we have a more objective criterion? I think we

should, at least, be able to:

(A) give a blueprint for building a robust room-temperature superconductor,

OR (B) assert with confidence that we will never be able to build a (cuprate-related)

room temperature superconductor,

OR (C) say exactly why we cannot do either (A) or (B).

The above two (A) and (B) may sound demanding because strictly speaking, we cannot

do them even for the BCS theory. However, in the BCS theory, we can do (A) and (B),

given a particular material with its certain information, such as the phonon spectrum,

phonon matrix element, band structures etc. Right now, to best of my knowledge, there

is no theory which satisfies any of these three conditions.

Let us ask a few more specific questions:

(1) Are the cuprates unique in showing high-Tc superconductivity
8?

(2) If so, what is special about them?

(e.g., band structure, two-dimensionality, antiferromagnetism, etc.)

(3) Should we think of high-Tc superconductivity as a consequence of the anomalous

normal-state properties, or vice versa?

(4) Is there a second phase transition associated with the T ∗-line? If so, what is the

nature of the low temperature (“pseudogap”) phase9?

(5) If yes to (4), is the phase transition relevant to high-Tc superconductors or a completely

unconnected phenomenon?

(6) Why does Tc depend systematically on n in homologous series?

8This depends on what we call the high-Tc superconductors, but nowadays people would say no since
the recent discovery of the ferropnictides, at least, is an counterexample.

9Right now, there is no positive evidence for the phase transition. Everything looks, at least, consistent
with the idea of a smooth crossover. However, some people believe that it corresponds to a sort of hidden
phase transitions, and suggest that the pseudogap phase breaks the time-reversal symmetry, rotational
symmetry, or some other kinds of symmetries.
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Lec. 8 Exotic superconductivity:

discussion

In this last lecture, I certainly do not want to try to review the whole field of exotic

superconductivity that would be quite impossible. I would like to do mainly three things:

(1) Discuss what properties are shared by all the exotic superconductors.

(2) Give a brief review of existing theoretical approaches.

(3) General considerations on energy saving in all “electronic” (non-phonon) super-

conductors.

In this last part of the lecture, I will be talking largely about some ideas I have been

playing with over last more than ten years. Some of those are published and some are

not. This idea is, though not fully recognized in the community, quite interesting since it

is a rather different approach from many of conventional approaches in the literatures.

8.1 Common properties of all exotic superconductors

Trivially, the most obvious common property is the superconductivity itself. What does

the “superconductivity” exactly mean, and what does it imply? In the original experiment

by H. K. Onnes, he applied constant current through, aluminum and measured voltage

drop across it (Fig. 8.1 (a)). He found that the resistivity drops sharply to zero at Tc.

This original experiment is rather simple from an experimental point of view, but this is

not the simplest experiment, theoretically speaking. There are two kind of much simpler

Fig. 8.1. (a) Cu is in the normal state, while Al is in the superconducting state. We apply

constant current through them and measure the voltage drops across Al. (b) Experimental

setup for the Meissner effect (c) Experimental setup for the persistent current.
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ones. The first one is the Meissner effect. In this experiment, one takes a simply con-

nected superconducting sample and hangs it up in zero magnetic field initially (Fig. 8.1

(b)). If one applies a magnetic field in the normal state (above Tc), the magnetic line

just goes straight through it. When one cools down the sample below Tc, then the mag-

netic field lines suddenly appear to be totally expelled from the metal. In other words,

superconductors show perfect diamagnetism.

It is important to realize that the Meissner effect is a true thermal-equilibrium effect.

We have not changed anything other than temperature. Thus, the Meissner effect cannot

simply be the consequence of zero-resistivity and it goes beyond that. The zero-resistivity

would tell us that the system may not come into equilibrium with the boundary conditions,

but here what is happening is coming out of equilibrium.

The second well-known phenomenon on the superconductivity is the persistent current.

One first takes a system with ring geometry and applies a magnetic filed through it

(Fig. 8.1 (c)). Then, makes the sample into superconducting state and sets up some

kinetic current by turning the magnetic flux down from finite value to zero. What one

finds is that the current circulate for an astronomically long time. It is, however, rather

easy to demonstrate that this cannot be an equilibrium effect and this is in fact an

astronomically long-lived metastable effect.

There is no a priori guarantee that these two phenomena always go together, but it

seems to come together, in all superconductors known to date.

8.2 Phenomenology of superconductivity

The following phenomenology are established mainly by London, Landau and Ginzburg

during 1938-50. The theory postulates that the superconducting state is characterized

by Schrödinger-like “macroscopic wave function” Ψ(r), which can be analyzed into the

magnitude and the phase:

Ψ(r) = |Ψ(r)| exp(iφ(r)). (8.1)

The crucial point is that the phase must be single valued modular 2π like the Schrödinger

wave function.

It further postulates that the current is given in a similar form to what we obtain in

the single particle quantum mechanics:

J(r) ∝ |Ψ(r)|2(∇φ(r)− e∗A(r)) (8.2)

where e∗ is an effective charge (e∗ = 2e in the BCS theory) and A is a gauge potential.

Under these two simple assumptions, let us see how far we can explain the two major

phenomena of superconductivity.

137

《講義ノート》



A. J. Leggett LEC. 8. EXOTIC SUPERCONDUCTIVITY: DISCUSSION

8.2.1 Meissner effect

The Meissner effect turns out to be the exact analog of atomic diamagnetism (for ex-

ample, xenon gas). We apply the magnetic vector potential to a simply connected system

and see what happens. It basically induces a diamagnetic current, which is opposite inside

to the vector potential.

First of all, because we are thinking of a bulk superconductivity in a simply connected

geometry,
∫
∇φ(r) · dl = 0. Thus, it is allowed to assume ∇φ(r) itself remains 0 even

when we apply magnetic field. Then, we obtain J = −ne
2

m
A, which directly leads

∇2B = λ−2
L B ⇔ B = B0 exp(−z/λL), (8.3)

where λL =
√
m/µ0ne∗2 is the London penetration length and z is the distance from the

surface. Thus if we apply the magnetic field to the surface, it falls exponentially.

This argument can be applied to both a single atom and superconductors. However,

there is a big difference between them. If we put the typical values and evaluate λL, it is

almost the same for both the single atom and superconductors (perhaps the order of ∼
1000 Å). On the other hand, the size of the atom is much less than that of superconductors.

Thus, in the case of atom, it shields only a small fraction of the applied field, while

superconductors show almost complete diamagnetism.

8.2.2 Persistent current

We can define a winding number n ≡ (2π)−1
∫
∇φ(r) · dl. n is conserved unless

|Ψ(r)| = 0 across some cross section, which is highly unfavorable energetically. As a

direct consequence, J ∼ n is conserved for an astronomically long time.

8.2.3 Summary

What was essential in the above argument? For these two phenomena to occur, there

must exist a complex order parameter Ψ(r) such that

(a) Nonzero values of |Ψ(r)|2 are (locally) stable.

(b) Spatial gradients of the phase of Ψ(r) correspond to charge currents.

An overwhelmingly natural guess at the nature of such an order parameter is as follows:

Ψ(r) represents macroscopically occupied eigenfunction of n-particle density matrix, i.e.,

the system possesses off-diagonal long range order (ODLRO). More rigorous arguments

(Yang [1], Kohn and Sherrington [2]) claim to show rigorously that

ODLRO is a necessary and sufficient condition for superconductivity.
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Fig. 8.2. Experimental setups for flux quantization (left) and AC Josephson junction

(right).

In strict two dimensions, we know from other exact theories that we cannot get the

ODLRO but the system can go through a Kosterlitz–Thouless (KT) phase transition

and essentially behave like a superconductor. Thus this is not a totally reliable theorem

but I do not know any counterexample in three dimensions. Historically, in the 1980s,

“anyon superconductivity” was claimed to be a superconductivity without the ODLRO.

However, it turned out that anyon superconductors are just a kind of the standard BCS

superconductors and thus not an counterexample.

Even if this “theorem” is true, it says nothing about the value of n. Since electrons are

fermions, n must be even. Yet, in principle, n could be 4, 6, ... Then why can we assume

n = 2? Two kinds of experiments are particularly persuasive (Fig. 8.2):

(a) In a (thick) ring geometry, total trapped flux Φ through the hole is quantized in

units of h/ne.

(b) In the AC Josephson effect, the principal frequency of current, when we apply

voltage V between Josephson junctions, should be ω = neV/~.

Both of these experiments have been done not only on old-fashioned superconductors but

also on exotic superconductors, and all results seem to be entirely consistent with n = 2.

There is no evidence for any value of n other than 2 in any superconductor. Thus, we can

reasonably conclude that

superconductivity is due to the formation of Cooper pairs.

That is the one thing all superconductors most surely have in common.
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8.3 What else do exotic superconductors have in com-

mon?

Apparently, exotic superconductors do not have much in common, apart from super-

conductivity itself. Even if we exclude alkali fullerides1,

(a) Not all are non-phonon mechanism (still controversial: some evidences suggest

that the mechanism of organics is phonon, and others show against that).

(b) Not all are quasi-two-dimensional (most heavy Fermions are three-dimensional).

(c) Not all are close to an antiferromagnetic phase (some heavy Fermions, Sr2RuO4

do not have the phase).

However, if we restrict ourselves to “high-temperature” superconductors (the cuprates,

ferropnictides, organics), then we get the following common features:

(a) All are strongly two-dimensional.

(b) All have an antiferromagnetic phase close to the superconducting phase.

(c) All have charge reservoirs well separated from superconducting layers.

8.4 Theoretical approaches (mostly for the cuprates)

1. Generic “BCS-like” approach.

Crudely speaking, what BCS did was to try to isolate a particular physical effect

which they believe, in some sense, is the key to the superconductivity in metals of

aluminium and lead. This fundamental physical effect was the effective attraction

between the electrons supplied by the exchange of virtual phonons. Next, they wrote

down the effective low energy Hamiltonian, which they believed encapsulated and

expressed this fundamental physical feature. This is, of course, the famous BCS

Hamiltonian, which was spectacularly successful.

Recently, there have been lots of attempts to do something very similar on exotic

superconductors. Typically one, tries to isolate what he/she thinks might be impor-

tant effects (for example, the exchange of some kinds of excitons, and the formation

of d-density wave, bipolarons, and whatever). One then, arbitrarily writes down

some kinds of postulated low energy effective Hamiltonian, which involves these

particular physical effects, and then move on to calculations. There are thousands

1Remember that when we discussed alkali fullerides in Lec. 5, we concluded that all the evidences
of alkali fullerides indicate they are probably just standard BCS superconductors due to the phonon
mechanism, and the only difference is the strong molecular structure that may explain the high-Tc in this
case. Thus, they are not genuine exotic superconductors.
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of papers in the literature which carry out this kinds of properties. Of course, they

usually claim that they can explain at least some certain experimental data.

I think there are a number of problems in this kind of approaches. Obviously,

we have no particular reason to believe any one of these effective Hamiltonians is

going to be the right description. For the BCS theory, we were very lucky; before

BCS did it, there was no particular reason to believe that this approach worked for

electron-phonon interaction, but it did. Furthermore, none of these (to the best of

my knowledge, except spin-fluctuation theory which is a bit different and I will treat

it somewhat differently) has ever made any prediction ahead of experiments.

2. Approaches based on the Hubbard model (which involves less guess than the first

class).

There are a large number of theoretical approaches in the literature based on

some forms of the Hubbard model. The simplest form of the Hubbard model is

Ĥeff = −t
∑

σ,(i,j)∈n.n.

a†iσajσ + U
∑
i

ni↑ni↓, (8.4)

where n.n. in the summation stands for the nearest neighbors. As long as we focus

on one relevant electronic orbital per site, then we do not have to worry about

parallel spin interaction because of the Pauli principle. This is very simple looking

Hamiltonian. However, as far as we know, it is not analytically soluble even in two

dimensions. Therefore, we have to resort to some possible strategies:

(a) Digital numerical simulations: even for most powerful computers available,

we can solve the problem typically up to only ∼ 10 × 10 sites, and it is not

obvious this is enough to give us a reasonable thermodynamic result.

(b) Analog simulation: last ten years lots of amazing things have happened in

the experiments on ultracold atoms in optical lattices. It turned out that atoms

in optical lattices under appropriate conditions are marvelous simulations of

the Hubbard model (much better than electrons in real solids). People have

just about started right now using this technique.

(c) “Guesses” at analytic solution: one kind of rather plausible results is that

we start from the BCS type wave function, and then project off all terms

having doubly occupied sites by the Gutzwiller projection operator, ΨN =

P̂GΨBCS, reflecting the strong repulsion between two electrons on the same

site. Some people claim qualitatively good explanation on experiments taking

this approach.

One problem of the Hubbard model in general is that the model may omit

important physical effects (e.g., long-range part of Coulomb interaction).
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3. Antiferromagnetic (AF) spin fluctuation exchange

In all high-Tc superconductors, the superconducting phase occurs close to the

AF phase (Fig. 8.3). Moreover, both the NMR and the neutron scattering data in

the cuprates suggest that the in-plain spin susceptibility χ(q, ω) in normal phase is

featureless as a function of ω, while they are strongly peaked as a function of q at

q = Q ≡ (±π/a,±π/a), the superlattice Bragg vector in the AF phase, as shown

in Fig. 8.4.

This is often expressed as a possible ansatz for χ(q, ω) (≡ χNAFL(q, ω))
2 [3]. Pines

et. al. [3] postulated a crude phenomenological ansatz that, far from pseudo-Bragg

vectors Q, χNAFL(q, ω) has Fermi liquid-like form:

χNAFL(q, ω) ∼=
χq

1− iω/Γq

∼=
χ0

1− iω/Γ0

. (8.5)

This is not particular interesting. However, when we are very close to a pseudo-

Bragg vector,

χNAFL(q, ω) ∼=
χQi

(� χq)

1 + (Qi − q)2ξ2(T )− iω/ωSF

(8.6)

where ωSF (� Γ0) is the AF fluctuation frequency, and ξ(T ) is the AF correlation

length. What this approach emphasizes is that the particular nearly antiferromag-

netic spin fluctuations are playing an important role.

Ansatz3 : single electrons couple strongly to AF spin fluctuations, whose exchange then

generates an effective electron-electron attraction. This is similar to what is going on in
3He, except that in 3He, what they are trying to exchange is paramagnon, related to the

close ferromagnetic phase.

Unfortunately, the question of what is correct coupling constant is rather controversial.

People usually put the value of the constant by hand or try to do some approximate calcu-

lations to evaluate it. However, there has been an argument in the literature which states

Fig. 8.3. The well-known phase diagram for the cuprates. S is the superconducting phase

and AF is the antiferromagnetic phase. p represents the density of holes.

2NAFL stands for Nearly antiferromagnetic Fermi liquid.
3Not directly testable in experiment.
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Fig. 8.4. (a) The AF spin order in real space. (b) The superlattice Bragg vector Q in

k-space.

that the coupling constant is actually zero. There are certain amount of controversies

about that, but let us here suppose that the coupling constant is not zero and see the

striking prediction of the spin-fluctuation theories (rather generic):

(a) The points on the Fermi surface most strongly connected by Qi are roughly at

(π/a, 0), (0, π/a) etc. (Fig. 8.4). Then, we can expect the gap becomes maximum

there. Thus we expect the gap is singlet, as indicated by ARPES.

(b) The sign of the pair wave function Fk: scattering processes should as far as

possible leave Fk invariant. However, the emission of the virtual spin fluctuations

flips the spin, changes momentum by Q. If a state is singlet, spin-flip is equivalent

with multiplying (−1). Hence to preserve Fk, momentum change by Q (A → B in

Fig. 8.4) must also multiply (−1).

Hence, from (a) Fk must be large at (π/a, 0) (b) Fk must change sign under R̂π/2. Of

the four even-parity irreducible representations of C4v (s, s−, dx2−y2 and dxy), only dx2−y2

works4. Thus,

spin-fluctuation theories unambiguously predict dx2−y2 symmetry.

As I said, that is the only prediction I know, in the whole history of the high temperature

superconductivity, where theorists made a non-trivial prediction which was later confirmed

by experiments. This is an appreciable credit of the spin-fluctuation theories. The main

criticism directed to the spin-fluctuation theories is that we just have too many fitted

parameters.

8.5 Which energy is saved in the superconducting

phase transition?

Let us start on the last part. I believe that the arguments in this section are at a more

general level than much of the theories I have talked about so far. Let me give a review of
4See Lec. 7.
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Fig. 8.5. Antiferromagnetic spin fluctuations connect the point on the Fermi surface close

to (π/a, 0), (0, π/a).

this interesting theory, where some of these are published [4] and some not published yet.

We start with a very general question: do we know anything about the energy which is

saved or not in the superconducting phase transition? Actually, it turns out that this is

just the case for different questions, and it can be applied to any other phase transition.

8.5.1 Virial theorem

We start with a really basic level, non-relativistic limit of the famous Dirac Hamiltonian:

Ĥ = K̂ + V̂ , (8.7)

K̂ =
∑
i

p̂2i
2m

+
∑
α

P̂ 2
α

2M
, (8.8)

V̂ =
1

8πε0

{∑
i,j

e2

|ri − rj|
+
∑
α,β

(Ze)2

|Rα −Rβ|
− 2

∑
i,α

Ze2

|ri −Rα|

}
. (8.9)

Let us imagine the following thought experiment5: let us imagine we cool the system

down to zero temperature, but forbid it to form Cooper pairs. Then, basically speaking,

we have got the “best” normal ground state of fermions. Let us relax that constraint and

allow them to form Cooper pairs. We know that this is what we see in experiments. Why

is it? It is because, trivially, it saves the energy by forming the Cooper pairs. In other

words, trivially, the energy of the best superconducting ground state must be below that

of the best normal state.

There is a very simple argument done by Chester [5] in the context of the old-fashioned

superconductivity, and he simply uses the sum rules. At zero pressure, we obtain

〈Ĥ〉 = 〈K̂〉+ 〈V̂ 〉, (8.10)

〈K̂〉 = −1

2
〈V̂ 〉 (8.11)

5This argument works not only for the superconductivity.
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from the virial theorem. Remember that the virial theorem works because we have a

simple form of the interaction. Thus, the expectation value for the total Hamiltonian is

〈Ĥ〉 = 1

2
〈V̂ 〉. (8.12)

Therefore, since Econd ≡ 〈Ĥ〉N − 〈Ĥ〉S > 0, the total Coulomb energy (electron-electron,

electron-nuclei, and nuclei-nuclei) must be smaller in the superconducting phase:

〈V̂ 〉S < 〈V̂ 〉N. (8.13)

This is a very general statement. Conversely, according to this relation, the total kinetic

energy (the kinetic energy of electrons plus the kinetic energy of nuclei) must be increased

in the the superconducting phase transition. That is a theorem, and we cannot get out of

that. This is a rather strong constraint to certain kinds of theories, in which they claim

that the kinetic energy is actually saved in the the superconducting phase transition. Such

theories can never be true unless we redefine the kinetic energy in some ways: otherwise,

this theorem kills them.

Let us now go on further from the Dirac Hamiltonian, and go on to an intermediate-level

description. Let us do the partition of electrons into “core” electrons and “conduction”

electrons. Since there are experiments showing that the phonons do not play a major role

in the cuprates, let us ignore the phonons. Then, we have an effective Hamiltonian for

the conduction electrons as follows:

Ĥ = K̂eff + V̂eff (8.14)

K̂eff =
∑
i

p̂2i
2m

+ Û(ri) (8.15)

V̂eff =
1

8πε0

∑
i,j

e2

ε|ri − rj|
, (8.16)

where Û is the potential of the static lattice, and ε is a high-frequency dielectric constant

(contribution to the dielectric constant from the core ions). We ignore the c-axis now. I

will later argue that almost certainly the only part of the kinetic energy we have to worry

about is in the ab-plane: basically forget about the c-axis, since that contribution turns

out to be very small. It is important to be aware, though it is not often remarked in the

literatures, that the interaction term is not the bare Coulomb interaction. Why not? It is

because it is going to be screened by atomic cores, and we know from experiments, that

this effect is not small. In fact, typically, the high-frequency dielectric constant of the

cuprates is somewhat 4 to 5. Therefore, it is a big effect.

Let us assume that U(ri) is independent of ε. This is not obvious, and it could be

relaxed, but for the moment, let us just play with it. Then, the only point where ε comes

in is the interaction part. If this is right, we can compare two systems which have the same
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form of U(r) and carrier density, but different ε. Let us imagine that we can somehow

do that comparison. What do we then expect? Is it better for the high-temperature

superconductivity to have a large value of ε, that is a weak Coulomb interaction, or the

opposite, small ε, and therefore a strong Coulomb interaction? Naively speaking, one

would say “look, the repulsion is not good for the superconductivity, and it is better to

set the repulsion down. In that way, we might be able to get an effective attraction.”

This is, in fact, not true. What we will get is the opposite. We can just apply the

Hellman-Feynman theorem, and obtain

∂〈Ĥ〉
∂ε

=

〈
∂V̂

∂ε

〉
= −

〈
V̂

ε

〉
. (8.17)

Therefore, provided 〈V̂ 〉 decreases in the normal to superconducting phase transition,

then
∂Econd

∂ε
< 0. In other words, “other things” (U(r), n) being equal, it is advantageous

to have as strong a Coulomb repulsion as possible. At first sight, it is counterintuitive. I

think it is somewhat plausible to look in the following way: forget everything you have

ever known about the BCS theory, effective attraction. What is happening is that there is

an enormous amount of the repulsion in the normal phase, but by forming Cooper pairs,

this repulsion somehow manages to decrease. The more repulsive energy we have in the

normal phase, the more chances of it to be released. Intuitively speaking, that is how it

works. This is a rather remarkable conclusion, and other things being equal, we want to

have a stronger Coulomb repulsion as possible for the high-temperature superconductivity.

Here is an example, which I think a possible manifestation of this. Let us consider a

single plane Hg-1201, and compare that with a central plane of Hg-1223. What do we

know about these two materials? Of course, there are other effects which distinguish

these two, but let us focus here on the screening of the Coulomb repulsion. Since both

have the same CuO2 plane, the screening by Cu and O is essentially the same. For the

inter-layer materials, there is a difference. For Hg-1201, there is BaO2 sitting between the

planes, which has a large polarizability, contributing to a large dielectric constant. Thus,

for Hg-1201 the Coulomb repulsion is well screened. On the other hand, for Hg-1223,

there is Ca++ between the layers, which has a little polarizability since it forms a closed

shell structure. Thus, the Coulomb interaction in the central plane is not screened. Thus,

the conclusion from the above argument is that the transition temperature for Hg-1223

Fig. 8.6. Schematic illustration of the crystal lattice for Hg-1201 and Hg-1223.
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is higher than that of Hg-1201: this is true indeed. I do not claim that this is the only

reason for the difference in the value of Tc, but at least it is going in the right direction6.

8.5.2 Energy consideration in “all-electronic” superconductors

Let us now turn to the general question: what do we know the way in which the energy

is saved or not saved in “all-electronic” superconductors? Again, I will start from the

intermediate level description (neglect phonons, inter-cell tunneling):

Ĥ = T̂(‖) + Û + V̂c, (8.18)

where T̂(‖) is the in-plane electron kinetic energy, Û is the potential energy of conduction

electrons under the static field of the lattice, and V̂c is the inter-conduction electron

Coulomb energy (intra-plane and inter plane). That is all we assume: we do not add spin

fluctuations, excitons, anyons... If they are there, they should come out from the above

Hamiltonian automatically. We know, from the previous section, that at least one of 〈T̂ 〉,
〈Û〉, 〈V̂c〉 must be decreased by the formation of Cooper pairs. The default option for this

is 〈V̂c〉: this is not necessarily true, but just to have a starting point, let us assume so.

An important observation, although it is not noted in much of literatures, is that there

is a rigorous relation (sum rule):

〈V̂c〉 ∼ −
∫
ddq

∫
dω Im

{
1

1 + Vqχ0(q, ω)

}
, (8.19)

where Vq is a Coulomb interaction (repulsive), and χ0(q, ω) is a bare density response

function. For the three-dimensional case, this is

〈V̂c〉3D ∼
∫
d3q

∫
dω (−Im ε(q, ω)−1), (8.20)

where Im ε(q, ω)−1 is called the loss function. Thus, this sum rule is a relation between

the interaction energy and the loss function.

Let us raise a question: where in the space of (q, ω) is the Coulomb energy saved (or

not)?. An interesting point is that quite independent from any microscopic theory, in

principle, this can be answered by experiments. It can be answered to an extent by

an optics, or X-rays, but the best answer will be obtained from the electron energy-loss

spectroscopy (EELS) (I will come back to this point in Sec. 8.5.6).

Let us discuss the property of Eq. (8.19), especially in the case Vqχ0(q, ω) � 1 and

Vqχ0(q, ω) � 1.

A. Vqχ0(q, ω) � 1

Suppose that Vqχ0(q, ω) � 1. This typically means q � q
(eff)
TF ∼ min(kF, kTF) ∼ 1 Å

−1
.

6This argument may be too naive because for Hg-1223 it neglects the polarizability of the other CuO2

planes.
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By expanding the denominator, and we find

〈V̂c〉q ∼= +Vq

∫
dω Imχ0(q, ω) = Vq〈ρqρ−q〉0. (8.21)

This means that in order to decrease 〈V̂c〉q, 〈ρqρ−q〉0 must decrease. However, if we

have anything like the BCS theory, the change in the density correlation function in the

superconducting phase transition δ〈ρqρ−q〉pairing can be written as

δ〈ρqρ−q〉pairing ∼
∑
p

∆p+q/2∆
∗
p−q/2. (8.22)

Now we arrive at an interesting point: if ∆p has the same sign over the Fermi surface, this

term should be positive. That means that the formation of the Cooper pairs increases the

Coulomb energy, which is exactly what we do not like. That gives us a strong argument

that the gap should change its sign over the Fermi surface. From this point of view, it

becomes not a big surprise that so many of the exotic superconductors appear to have

also exotic pair wave functions, i.e., gap symmetries.

B. Vqχ0(q, ω) � 1

Let us consider the opposite case Vqχ0(q, ω) � 1. This typically means q � q
(eff)
TF . Then,

we find

〈V̂c〉q ∼=
1

Vq

(
−Imχ0(q, ω)

−1
)
. (8.23)

This tells us that in order to to decrease 〈V̂c〉q (i.e., decrease Tc), we should increase

Imχ0(q, ω), which is consistent with an increase in 〈ρqρ−q〉0. In other words, an increased

correlation leads to an increased screening, which in turn means a decrease of the Coulomb

energy.

8.5.3 Eliashberg vs. Overscreening

In the standard Eliashberg approach, crudely speaking, we generate an effective attrac-

tion between pairs of electrons, as in Fig. 8.7 (a), the electron with k and −k will form

a pair with that attraction. The attraction may be an exchange of some kinds of bosons,

such as phonons, spin fluctuations, or excitons, but it must be attractive.

In the overscreened picture, as illustrated in Fig. 8.7 (b), the main effect of pairing

is not coming from the electrons interacting in the opposite momentum, but from all

momenta k1, k2. The contribution comes from the modification of the interaction energy

between those electrons. The great advantage of this picture is that it does not require

an attractive interaction in the normal phase. Thus it is a different picture from the

Eliashberg types of theories.
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(a) (b)

Fig. 8.7. (a) Feynman diagram for the Eliashberg type of interaction between electrons.

(b) Feynman diagram for the overscreened interaction between electrons.

8.5.4 Role of two-dimensionality

Let us turn to a generic question: can we get any insight into why so many, or all, of

the high-temperature superconductors are strongly two-dimensional? To consider this,

use the sum rule again:

〈V̂ 〉 = −1

2

∑
q

∫
dω

2π
Im
{ 1

1 + Vqχ0(q, ω)

}
= −1

2

1

(2π)d+1

∫ ∞

0

ddqIm
{ 1

1 + Vqχ0(q, ω)

}
.

(8.24)

Here, note that Vq depends on the dimension. In three dimensions, Vq ∼ q−2, and from

the definition, 1 + Vqχ0(q, ω) ≡ ε||(q, ω), we find

〈V̂ 〉 ∼
∫
q2dq

∫
dω
{
− Im

1

ε||(q, ω)

}
. (8.25)

Note that we have the loss function in the right-hand side. Therefore, the “small” q region

is strongly suppressed in the integral7.

In two dimensions, on the other hand, Vq ∼ q−1, so that

Vqχ0(q, ω) ∼ q
d

2
(ε(q, ω)− 1), (8.26)

where d is an inter-plane spacing. Then, we obtain8,

〈V̂ 〉 ∼
∫
qdq
{
− Im

1

1 + q d
2
(ε3D(q, ω)− 1)

}
∼ 1

d

∫
dq
{
− Im

1

ε3D(q, ω)

}
.

(8.27)

7The similar argument is used in the original paper of Hubbard [6] to justify that the small q region
is not essentially important, so that we can neglect the long-range part of the interaction.

8Note that the high-frequency dielectric constant for the cuprates is rather large, so that the term
q d
2 (ε3D(q, ω)− 1) can be dominant even for a low momentum.
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Thus, the linear q factor in the integration is canceled by the linear q dependence on the

right-hand side of Eq. (8.26), and the small q contribution may be as important as large

q part. That raises an important question: in 2D-like high-temperature superconductors

(cuprates, ferropnictides, organics...), is the saving of the Coulomb energy, mainly at small

q?

8.5.5 Constraints on the Coulomb saved at small q

What do we know about constraints on the saving of the Coulomb energy at small q

[4]? To answer this question, let us recall

〈V̂ 〉 = Vq〈ρqρ−q〉 =
Vq
2π

∫ ∞

0

Imχ(q, ω)dω. (8.28)

Here and from now on, we are using the “full” density response χ(q, ω), not the “bare

density response”. Note that the dimension can be arbitrary in the following discussion.

From the sum rule for the full density response function, we obtain

J−1 ≡ 2

π

∫ ∞

0

dω

ω
Imχ(q, ω) = χ(q, 0) Kramers–Kronig relation, (8.29)

J1 ≡ 2

π

∫ ∞

0

ωdωImχ(q, ω) =
nq2

m
f-sum rule, (8.30)

J3 ≡ 2

π

∫ ∞

0

ω3dωImχ(q, ω) =
q2

m2
〈A〉+ q4

n2

m2
Vq + o(q4). (8.31)

The third equation is a generalized Mihara–Puff relation [7], and

〈A〉 ≡ − 1

π

∑
k

(k · q̂)2U−kρk. (8.32)

There is, in fact, a strong argument that 〈A〉 should be positive here. Note that in two

dimensions, the term in 〈A〉 is dominant at small q compared with the Vq term. From the

general Cauchy–Schwartz inequalities (for arbitrary dimension), we obtain

1

2

√
V 2
q J−1J1 ≥ 〈V̂ 〉q ≥

1

2

√
V 2
q J

3
1/J3, (8.33)

or equivalently,
~ωp

2
+ o(q2) ≥ 〈V̂ 〉q ≥

~ωp

2

1√
1 + 〈A〉

nmω2
p

+ o(q2). (8.34)

It is interesting to see from this inequality that for 〈A〉 = 0 (for example, the “jellium”

model9), there is no saving of the Coulomb energy for q → 0 up to o(q2). In other

9The jellium model is a model where we assume a uniform background of positive charge, rather than
a periodic potential produced by the ion.
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words, if indeed a lot of the Coulomb energy is saved in the low-energy part for the

high-temperature superconductors, it is crucial to have the lattice!

Here, let me show a further argument on why the small q region may be important.

Let us get back to the question which, in principle, can be answered by experiment:

Where in the space of q and ω is the Coulomb energy saved (or not)?

Let us, at this point, go over to a question at first totally different:

Why does Tc depend on n, the number of layers?

As we have discussed for Ca-spaced homologous series, Tc rises with n at least up to

n = 3 (this point is noncontroversial). This rise may be fitted by the formula (for “not

too large” n)

T (n)
c − T (1)

c ∼ const
(
1− 1

n

)
. (8.35)

Note that this formula is controversial. A possible explanation is as follows:

A . Boring explanation

The superconductivity is a single-plane phenomenon, but multi-layering affects properties

of individual planes, such as doping, band structure, screening by off-plane ions...

B . “Interesting” explanation: inter-plane effects

Inter-plane effects play an important roles. Some of the examples are listed below:

1. Anderson inter-layer tunneling model10.

2. Kosterlitz–Thouless theory.

3. Inter-plane Coulomb interactions (we know that they are present!).

Primarily, what about the third possibility? For sure, we know that they are there.

The point is whether they are important or not. We have to have the electron-electron

interaction between neighboring planes if they are not negligible. If we take the effect

of the Coulomb interaction from electrons in the nearest plane, and perform the Fourier

transform, we obtain

Vint(q) ∼ q−1 exp(−qd), (8.36)

where q is the in-plane wave vector, and d is the intra-multilayer spacing, which is typically

d ∼ 3.5 Å.

If the option 3 is right, then even in the single-plane materials, a dominant region of q

is q < d−1!

10Although this idea is abandoned, but it is still interesting.
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8.5.6 Mid-infrared optical and EELS spectra of the cuprates

Then, where in ω is energy saved? Here I use the WILLIE SUTTON principle11: we

can only save the energy for making the superconducting phase transition in regions of

q and ω where there is a lot of energy stored up in the normal phase. Thus, to achieve

a high-temperature superconductor, we have to specify where the energy is saved in the

normal phase. This can be investigated in experiments.

Optics

Optics show that there is a lot of energy saved in the long-wavelength, mid-infrared

regime, as we can see from the measurement of the loss function L(ω) ≡ −Imε−1(ω)

shown in Fig. 8.8.

EELS

EELS measures q → 0 shape of the loss function, and verifies that (roughly) the same

shape persists for finite q. (at least up to ∼ 0.3 Å).

Thus, it looks like that that’s where the money is! That’s where the energy is saved in

the normal phase!

(logarighmic scale)

0.001 eV 0.01 eV 0.1 eV 1 eV 10 eV

Fig. 8.8. Schematic illustration of the loss function L(ω) measured by an optical mea-

surement. The large peak corresponds to the mid-infrared peak, while the contribution

in the higher-energy part is a rather material-dependent part, coming from each atoms.

11WILLIE SUTTON is a famous bank robber in the US in the 1930s. One of the reason he is notorious
is when journalists interview him, “why do you rob banks?”. Then he replies, “Because that’s where the
money is!”.
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Then, that is the obvious guiding principle we can use for the realization of high-temperature

superconductors.

If the saving of the Coulomb energy is mainly in the low-q, mid-infrared regime, then

we can expect that a certain change in the shape of spectrum should appear in the

normal-to-superconducting phase transition: this should be able to be observed in the

EELS spectrum. In fact, from the sum rule, we expect that Imε−1 must decrease in the

phase transition in the mid-infrared regime. This means that Im
(

δε
ε2n

)
> 0, where δε

is the change of the dielectric constant through the phase transition. To estimate this

quantity from experiments, we should know both the real part and imaginary part of the

dielectric constant. Unfortunately, in most experiments, they only show such quantities

as the reflectivity, effective plasma frequency, and so on, and there are few papers which

show both the real and imaginary part explicitly. There is one paper which does show

both12, and there is a very interesting piece of data in it [8]: both in the real part and the

imaginary part, they have a strong frequency dependence. However, for any frequency,

they are exactly the opposite to each other. That is, the real part of ε is exactly minus

of the imaginary part:

εn(ω) ∼=
ω2
p

ω2
(−1 + i), (8.37)

where ωp is the plasma frequency. This equation means

ε−2
n ∼ ω4

2ω4
p

i. (8.38)

If this is right, we can conclude that a condition Reδε < 0 is required in the mid-infrared

regime. We now apply the Kramers–Kronig transform to see what it implies for the

imaginary part, and we obtain∫ ∞

0

ω′4
{1
2
log
∣∣∣ωe + ω′

ωe − ω′

∣∣∣−ωe

ω′

}
Imδχ(q, ω′)dω′ < 0 (ωe ∼ ωp). (8.39)

It is important to note that the bracket part in this equation is positive for ω′ > ωe, where

ωe is some characteristic frequency of the order of the plasma frequency ωe ∼ ωe ∼ ωp.

On the contrary, it is negative for ω′ < ωe. If indeed a lot of energy is saved in the

low-momentum, mid-infrared regime, what we would expect from this is that the spectral

weight transfers from ω > ωp to ω < ωp: a transfer into the mid-infrared regime. The

experimental data and the presentation in the literatures are complicated, but I believe

that this in fact is entirely consistent with what they actually see in the experiment.

Even if it works, however, I do not want you to care too much. The reason we should

not worry is that the optics measure q � ξ−1, whereas the saving of the Coulomb en-

ergy should be mainly from ξ−1 < q . qTF. Therefore, what we really need is the EELS

experiment! Although there have been EELS experiments in the normal phase in the

12Admittedly, they measured the reflectivity, and then used the Kramers–Kronig relation to obtain the
dielectric constant, but it seems that they are right.
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mid-infrared regime, and there have been also done in the superconducting regime, there

has been no experiment which has shown the changes in going from the normal to super-

conducting phase in the mid-infrared regime. I have been leaning on various experimental

groups for 15 years to do these experiments, and at last my colleagues P. Abbamonte,

and J. Zuo at UIUC are going to do this experiment. Hopefully, in a year or two, we will

know the result of the experiment. That will be a really crucial test for this argument.

8.6 How can we realize room temperature supercon-

ductors?

Let us just assume that the above idea is checked in the EELS experiment, and ask

what are good ingredients for enhancing Tc. The possible ways are as follows:

1. Two-dimensionality (a weak tunneling contact between layers, but a strong Coulomb

contact).

2. Strongest possible Coulomb interaction (intra-plane and inter-plane).

3. Strong Umklapp scattering may give rise to a wide and strong mid-infrared peak.

What we have actually shown is that in the absence of the lattice potential, we will not

get the saving of the energy. Thus, the lattice is crucial. One of the effect of the lattice

is to give rise to the Umklapp scattering, although there are of course many other effects.

If there is a strong Umklapp scattering, it gives rise to a wide and strong mid-infrared

peak. Since the wide and strong mid-infrared peak is a very characteristic thing in the

cuprates, it seems that this argument works. However, note that although we know for

sure that there is such a peak, we are not sure about its origin, and the Umklapp process

is only one possibility. For example, a strong antiferromagnetic fluctuation may be the

origin for the mid-infrared peak.

Anyway, the EELS experiment will show whether the above argument works or not,

and these guidelines are correct or not.

Finally, I will make my bet on robust room-temperature superconductors. I do not

think we will get it in my lifetime unless I am very lucky (∼ 10%). But, I suspect in

your lifetime, we will probably get a robust room temperature superconductor (> 50%).

Hopefully, this kind of argument may be somewhat helpful in finding new materials and

so forth.

Thank you
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